The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 74122
Back to Result List

Beeinflussung der HDAC-Aktivität und Genexpression durch den Histondeacetylase-Inhibitor Valproinsäure

  • Die Transkription vieler Gene wird über den Acetylierungsgrad der Histone reguliert. Entsprechend erweiterte die Entdeckung von Histondeacetylase-Inhibitoren das Verständnis um Transkriptions-Repressoren und ihre Rolle in der Pathogenese beträchtlich. Zur Zeit stehen die Modifikationen der Histondeacetylasen (HDACs) sowie die biologischen Rollen der verschiedenen HDAC-Isoenzyme im Zentrum intensiver Forschungsarbeiten. In der vorliegenden Arbeit wurde anhand verschiedener Zelllinien und mit murinem Primärmaterial nachgewiesen, dass das gut verträgliche Antiepileptikum Valproinsäure (VPA) ein potenter HDAC-Inhibitor ist. Dies zeigt sich daran, dass VPA in vivo die durch HDACs vermittelte transkriptionelle Repression aufhebt und zur Akkumulation hyperacetylierter Histone führt. In vitro Enzymassays weisen darauf hin, dass VPA selbst und nicht ein hypothetischer Metabolit die Histondeacetylasen hemmt. Darüber hinaus wurde mit Bindungs- und Kompetitionsstudien festgestellt, dass eine Interaktion von VPA mit dem katalytischen Zentrum der HDACs stattfindet. Weitere Analysen zeigten, dass VPA bevorzugt Klasse I HDACs hemmt. Durch dieses Merkmal einer erhöhten Spezifität bei gleichzeitig guter Bioverfügbarkeit definiert VPA eine neue Klasse von HDAC-Inhibitoren. Hieraus ergeben sich Hinweise auf strukturelle Anforderungen, die ein HDAC-Inhibitor erfüllen muß, um spezifischer und weniger toxisch als konventionelle Chemotherapeutika zu wirken. Außerdem eröffnete das neu entdeckte pharmakologische Wirkungsspektrum von VPA auf HDACs Erkenntnisse um zusätzliche therapeutische Einsatzmöglichkeiten dieses etablierten Arzneimittels. Bereits jetzt wird VPA in klinischen Studien an Patienten mit Krebs verabreicht. HDAC-Inhibitoren gelten als potentielle Medikamente für die Therapie maligner Neoplasien. Deshalb besteht großes Interesse an den molekularen Mechanismen, mit denen Substanzen dieser Wirkstoffklasse das Wachstum transformierter Zellen in vitro und in vivo hemmen. In den humanen Melanomzelllinien SK-Mel-37 und Mz-Mel-19 bewirken klinisch relevante VPA-Dosen eine zeit- und dosisabhängige Akkumulation von Zellzyklusinhibitoren und hyperacetylierten Histonen, morphologische Veränderungen und eine verringerte Proliferationsrate. Die verminderte Proliferation wird von einem veränderten Zellzyklusprofil und Apoptose unter Beteiligung sowohl der extrinsisch als auch der intrinsisch bedingten Caspase-Kaskade begleitet. Dies manifestiert sich in der Spaltung der Caspasen 3, 8 und 9, einer Schädigung der Mitochondrien, der apoptotischen PARP-Spaltung, einem Abbau der genomischen DNA und einer Inaktivierung des GFP-Proteins. Diese Analysen in Melanomzellen sprechen dafür, dass die weitgehend selektive Wirkung von VPA auf Klasse I HDACs der Mechanismus ist, mit dem diese Substanz das Wachstum bestimmter Tumorzellen hemmt. Durch Genexpressions-Analysen konnten außerdem neue Modelle zum Einfluss von VPA auf solide Tumoren postuliert werden. Darüber hinaus wurde festgestellt, dass die Expression und Induzierbarkeit der Zellzyklusregulatoren p21WAF/CIP1 und p27Kip1 und des latent cytoplasmatischen Transkriptionsfaktors Stat1 Biomarker für die Sensitivität von Melanomzellen gegenüber HDAC-Inhibitoren sind. Im Einklang hiermit wird die proapoptotische Wirkung von VPA durch das Cytokin Interferon α und den S-Phase-Inhibitor Hydroxyharnstoff deutlich gesteigert. Diese Ergebnisse sprechen für den Einsatz von VPA in tierexperimentellen und klinischen Studien. Aufgrund der Schlüsselrolle der HDACs für die physiologische und aberrante Genexpression ist es wichtig, die Mechanismen ihrer Regulation zu kennen. In der vorliegenden Arbeit wurde anhand zahlreicher kultivierter Zelllinien und mittels eines Mausmodells gezeigt, dass therapeutisch einsetzbare VPA-Dosen neben der Hemmung enzymatischer Aktivität auch zu einer isoenzymspezifischen Verringerung der Klasse I Histondeacetylase HDAC2 führen. Als Ursache hierfür konnten eine verstärkte Poly-Ubiquitinylierung und ein proteasomaler Abbau ermittelt werden. Gleichzeitig wurden die Beteiligung etlicher Proteasen und eine veränderte Synthese oder Prozessierung der HDAC2-mRNA als Mechanismen ausgeschlossen. Expressionsanalysen identifizierten die E2 Ubiquitinkonjugase Ubc8 als von HDAC-Inhibitoren induziertes Gen. Mittels transienter Überexpression („Gain-of-Function“) und siRNA-Experimenten („Loss-of-Function“) konnte dieses Gen als limitierender Faktor des HDAC2-Umsatzes in vivo erkannt werden. Weiterhin wurde gezeigt, dass die E3 Ubiquitinligase RLIM spezifisch mit HDAC2 interagiert. Die Expression von RLIM beziehungsweise seine enzymatische Funktion beeinflusst die HDAC2-Konzentration in vivo. Hierbei kann VPA klar von dem HDACInhibitor Trichostatin A (TSA) abgegrenzt werden. Dieser hemmt ein breites Spektrum an HDACs und induziert Ubc8, führt aber gleichzeitig zu einem proteasomal vermittelten Abbau des RLIM-Proteins. Analysen mit überexprimiertem RLIM zeigten, dass TSA aufgrund dieses Mechanismus nicht in der Lage ist, den Abbau von HDAC2 zu induzieren. Somit ist im Rahmen dieser Arbeit die Ubiquitinylierungs-Maschinerie für HDAC2 charakterisiert worden. Hierdurch sind neue Aspekte zum Zusammenspiel zwischen dem Ubiquitin-Proteasom-System und der Transkriptionsrepression nachgewiesen worden. Isoenzymspezifische HDAC-Inhibitoren können zur Aufklärung der Funktion einzelner Histondeacetylasen beitragen, insbesondere wenn Knock-Out-Studien zu aufwendig oder aufgrund embryonaler Letalität nicht durchführbar sind. Die Wichtigkeit dieser Analysen wird gerade bei HDAC2 deutlich, da diese Histondeacetylase in vielen soliden und hämatologischen Tumoren überexprimiert ist, und ihre Deregulation möglicherweise zur Krebsentstehung beiträgt. Die in der vorliegenden Arbeit identifizierte Regulation dieses HDAC-Isoenzyms könnte Hinweise auf den Ablauf eines malignen Transformationsprozesses geben. Darüber hinaus zeigt der nachgewiesene Regulationsmechanismus Erfordernisse und potentielle Zielstrukturen einer pharmakologischen Intervention auf. Schließlich könnten die Selektivität von VPA für Klasse I HDACs zusammen mit der Spezifität für HDAC2 die Gründe für die geringen Nebenwirkungen der VPA-Behandlung bei gleichzeitigem Auftreten antitumoraler Effekte sein.

Download full text files

  • Olli_Diss.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Oliver Holger KrämerORCiDGND
URN:urn:nbn:de:hebis:30:3-844140
Place of publication:Frankfurt am Main
Referee:Robert TampéORCiDGND
Advisor:Thorsten Heinzel, Robert Tampé
Document Type:Doctoral Thesis
Language:German
Year of Completion:2003
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2024/04/26
Page Number:169
Institutes:Biowissenschaften / Biowissenschaften
Angeschlossene und kooperierende Institutionen / Georg-Speyer-Haus
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG