• search hit 4 of 141
Back to Result List

Production of light nuclei and antinuclei in Pb-Pb collisions at the LHC

  • Das Feld der Hochenergie-Schwerionenforschung hat sich der Untersuchung des Quark-Gluon-Plasmas (QGP) gewidmet. Ein QGP ist ein sehr heißer und dichter Materiezustand, der kurz nach dem Urknall für einige Mikrosekunden das Universum füllte. Unter diesen extremen Bedingungen sind die fundamentalen Bausteine der Materie, die Quarks und Gluonen, quasi frei, also nicht in Hadronen eingeschlossen, wie es unter normalen Bedingungen der Fall ist. Hadronen sind Teilchen, die aus Quarks und Gluonen bestehen. Die bekanntesten Hadronen sind Protonen und Neutronen, die Bestandteile von Atomkernen, aus denen, zusammen mit Elektronen, die gesamte bekannte Materie aufgebaut ist. Um ein QGP im Labor zu erzeugen, lässt man ultrarelativistische schwere Ionen, wie zum Beispiel Pb-208-Kerne, aufeinander prallen. Dies geschieht am CERN, dem größten Kernforschungszentrum der Welt. Der Teilchenbeschleuniger, welcher Protonen und Pb-Kerne beschleunigt und zur Kollision bringt, heißt Large Hadron Collider (LHC) und ist mit 27 km Umfang der größte der Welt. Bei einer einzigen Pb-Pb Kollision am LHC werden mehrere Tausend Teilchen und Antiteilchen erzeugt. Das dedizierte Experiment zur Untersuchung von Schwerionenkollisionen am LHC ist ALICE. ALICE ist mit mehreren Teilchendetektoren ausgerüstet, die es ermöglichen, tausende Teilchen gleichzeitig zu messen und zu identifizieren. Unter den produzierten Teilchen befinden sich auch leichte Atomkerne, wenngleich diese nur sehr selten erzeugt werden. Die Anzahl der produzierten Teilchen pro Teilchensorte hängt nämlich von deren Masse ab. In Pb-Pb Kollisionen am LHC sinkt die Anzahl der produzierten (Anti)kerne exponentiell um einen Faktor 1/330 bei Hinzufügen jedes weiteren Nukleons. Die Menge an produzierten Teilchen pro Spezies stellt Informationen über den Produktionsmechanismus beim Übergang vom QGP zum Hadrongas zur Verfügung. Hierbei sind leichte (Anti)kerne von besonderem Interesse, da sie vergleichsweise groß sind und ihre Bindungsenergie bis zu zwei Größenordnungen kleiner ist als die Temperaturen, die bei der Erzeugung der Hadronen vorherrschen. Es ist bis heute noch nicht verstanden, wie leichte (Anti)kerne bei diesen Bedingungen erzeugt werden und überleben können. Für diese Arbeit wurden ca. 270 Millionen Pb-Pb Kollisionen bei einer Schwerpunktsenergie von 5,02 TeV, die von ALICE im November 2018 aufgezeichnet wurden, analysiert. Es wurde die Produktion von (Anti)triton und (Anti)alpha untersucht. Wegen ihrer großen Masse werden beide Kerne sehr selten produziert, bei weitem nicht bei jeder Kollision. Antialpha ist der schwerste Antikern, der jemals gemessen wurde. Aufgrund dieser Seltenheit ist die Größe des zur Verfügung stehenden Datensatzes entscheidend. Es war möglich, das erste jemals gemessene Antialpha-Transversalimpulsspektrum zu extrahieren. Auch für (Anti)triton und Alpha wurden Transversalimpulsspektren bestimmt. Die Ergebnisse wurden mit theoretischen Modellen und anderen ALICE Messungen verglichen. Am Ende wird in einem Ausblick auf das kürzlich durchgeführte Upgrade der ALICE Spurendriftkammer (TPC) eingegangen. In der nächsten, bald startenden Datennahmeperiode wird der LHC seine Kollisionsrate erheblich erhöhen, was es ermöglichen wird, mehr als 100 mal so viele Daten wie bisher aufzuzeichnen. Hiervon werden die in dieser Arbeit beschriebenen (Anti)triton- und (Anti)alpha-Analysen beachtlich profitieren. Um mit den erheblich höheren Kollisionsraten zurecht zu kommen, mussten einige Detektoren, unter anderem die TPC, maßgeblich erneuert werden. In den ersten beiden Datennahmeperioden wurde die TPC mit Vieldrahtproportionalkammern betrieben. Diese sind allerdings viel zu langsam für die geplanten Kollisionsraten. Deshalb wurden sie im Jahr 2019, während einer langen Betriebspause des LHC, durch Quadrupel-GEM (Gas Electron Multiplier) Folien basierte Auslesekammern ersetzt, welche eine kontinuierliche Auslese der TPC ermöglichen. Da es sich um die erste jemals gebaute GEM TPC im Großformat handelt, war ein umfangreiches Forschungs- und Entwicklungs- (F&E) Programm notwendig, um die GEM Auslesekammern zu charakterisieren und zu testen. Im Rahmen dieses F&E Programms wurden am Anfang dieser Promotion systematische Messungen an einer kleinen Test TPC mit Quadrupel-GEM Auslese, die extra zu diesem Zweck gebaut worden war, durchgeführt. Hierbei wurde der Rückfluss der bei der Gasverstärkung erzeugten Ionen in das Driftvolumen der TPC und die Energieauflösung mit verschiedenen GEM Folien Typen und unterschiedlicher Anordnung gemessen. Das Ziel war, möglichst kleine Ionenrückflüsse bei möglichst guter Energieauflösung zu erreichen. Hierbei musste ein Kompromiss gefunden werden, da die beiden Größen sich gegenläufig verhalten. Es war jedoch möglich, mit mehreren GEM Konfigurationen Spannungseinstellungen zu identifizieren, bei denen beide Größen den gewünschten Anforderungen entsprachen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Esther BartschGND
URN:urn:nbn:de:hebis:30:3-678534
DOI:https://doi.org/10.21248/gups.67853
Title Additional (German):Produktion leichter Kerne und Antikerne in Pb-Pb Kollisionen am LHC
Place of publication:Frankfurt am Main
Referee:Harald AppelshäuserGND, Benjamin DönigusGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2022/04/25
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/02/21
Release Date:2022/05/10
Page Number:148
Last Page:136
HeBIS-PPN:494610980
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht