The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 586
Back to Result List

Kinetic resolution of a tryptophan-radical intermediate in the reaction cycle of Paracoccus denitrificans cytochrome c oxidase

  • The catalytic mechanism, electron transfer coupled to proton pumping, of heme-copper oxidases is not yet fully understood. Microsecond freeze-hyperquenching single turnover experiments were carried out with fully reduced cytochrome aa(3) reacting with O(2) between 83 micros and 6 ms. Trapped intermediates were analyzed by low temperature UV-visible, X-band, and Q-band EPR spectroscopy, enabling determination of the oxidation-reduction kinetics of Cu(A), heme a, heme a(3), and of a recently detected tryptophan radical (Wiertz, F. G. M., Richter, O. M. H., Cherepanov, A. V., MacMillan, F., Ludwig, B., and de Vries, S. (2004) FEBS Lett. 575, 127-130). Cu(B) and heme a(3) were EPR silent during all stages of the reaction. Cu(A) and heme a are in electronic equilibrium acting as a redox pair. The reduction potential of Cu(A) is 4.5 mV lower than that of heme a. Both redox groups are oxidized in two phases with apparent half-lives of 57 micros and 1.2 ms together donating a single electron to the binuclear center in each phase. The formation of the heme a(3) oxoferryl species P(R) (maxima at 430 nm and 606 nm) was completed in approximately 130 micros, similar to the first oxidation phase of Cu(A) and heme a. The intermediate F (absorbance maximum at 571 nm) is formed from P(R) and decays to a hitherto undetected intermediate named F(W)(*). F(W)(*) harbors a tryptophan radical, identified by Q-band EPR spectroscopy as the tryptophan neutral radical of the strictly conserved Trp-272 (Trp-272(*)). The Trp-272(*) populates to 4-5% due to its relatively low rate of formation (t((1/2)) = 1.2 ms) and rapid rate of breakdown (t((1/2)) = 60 micros), which represents electron transfer from Cu(A)/heme a to Trp-272(*). The formation of the Trp-272(*) constitutes the major rate-determining step of the catalytic cycle. Our findings show that Trp-272 is a redox-active residue and is in this respect on an equal par to the metallocenters of the cytochrome c oxidase. Trp-272 is the direct reductant either to the heme a(3) oxoferryl species or to Cu (2+)(B). The potential role of Trp-272 in proton pumping is discussed.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Frank G. M. Wiertz, Oliver-Matthias H. Richter, Bernd LudwigGND, Simon de VriesGND
URN:urn:nbn:de:hebis:30:3-762817
DOI:https://doi.org/10.1074/jbc.M705520200
ISSN:0021-9258
Parent Title (English):Journal of biological chemistry
Publisher:American Society for Biochemistry and Molecular Biology Publications
Place of publication:Bethesda, Md
Document Type:Article
Language:English
Date of Publication (online):2021/01/04
Year of first Publication:2007
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/02/23
Volume:282.2007
Issue:43
Page Number:12
First Page:31580
Last Page:31591
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International