• search hit 2 of 3
Back to Result List

Applying non-canonical amino acids for investigation of vibrational energy transfer and dynamic allostery in a synaptic protein domain

  • Proteine sind die Maschinen der Zellen. Um die Funktionalität von zahlreichen zellulären Prozessen zu gewährleisten, müssen Kommunikationssignale innerhalb von Proteinen weitergeleitet werden. Die Weiterleitung einer Störung an einem Ort im Protein zu einer entfernten Stelle, an welcher sie strukturelle und/oder dynamische Änderungen auslöst, wird Allosterie genannt. Zunächst wurde Allosterie hauptsächlich mit großräumigen Konformationsänderungen in Verbindung gebracht, aber später entwickelte sich ein dynamischerer Blickwinkel auf Allosterie in Abwesenheit dieser großräumigen Konformationsänderungen. Die Idee eines allosterischen Pfades bestehend aus konservierten und energetisch gekoppelten Aminosäuren, welche die Signalweiterleitung zwischen entfernten Stellen im Protein vermitteln, entstand. Diese allosterischen Pfade wurden durch zahlreiche theoretische Studien in Zusammenhang mit Pfaden effizienten anisotropen Energieflusses gebracht. Der Energiefluss entlang dieser Netzwerke verknüpft allosterische Signalübertragung mit Schwingungsenergietransfer (VET - vibrational energy transfer). Die Großzahl der Forschungsarbeiten über dynamische Allosterie basiert auf theoretischen Methoden, weil nur wenige geeignete experimentelle Verfahren existieren. Um diesen essentiellen biologischen Prozess der Informationsübertragung besser verstehen zu können, ist die Entwicklung neuer und leistungsstarker experimenteller Instrumente und Techniken daher dringend erforderlich. Die vorliegende Dissertation setzt sich dies zum Ziel. VET in Proteinen ist aufgrund der Proteingeometrie inhärent anisotrop. Alle globulären Proteine besitzen Kanäle effizienten Energieflusses, von denen vermutet wird, dass sie wichtig für Proteinfunktionen, wie die schnelle Ableitung von überschüssiger Wärme, Ligandenbindung und allosterische Signalweiterleitung, sind. VET kann mit zeitaufgelöster Infrarot (IR) Spektroskopie untersucht werden, bei welcher ein Femtosekunden Anregepuls eines Lasers Schwingungsenergie in ein molekulares System an einer bestimmten Stelle injiziert und ein, nach einem veränderbarem Zeitintervall folgender, IR Abfragepuls die Ausbreitung dieser Schwingungsenergie detektiert. Ein protein-kompatibler und universell einsetzbarer Chromophor, der die Energie eines sichtbaren Photons in Schwingungsenergie konvertiert, wird als Heizelement benötigt um langreichweitige VET Pfade in Proteinen kartieren zu können. Der Azulen (Azu) Chromophor eignet sich dafür, weil er nach Photoanregung des ersten elektronischen Zustandes durch ultraschnelle interne Konversion fast die gesamte injizierte Energie innerhalb von einer Picosekunde in Schwingungsenergie umwandelt. Eingebettet in die nicht-kanonische Aminosäure (ncAA - non-canonical amino acid) ß-(1-Azulenyl)-L-Alanine (AzAla), kann der Azu Rest in Proteine eingebaut werden. Die Ankunft der injizierten Schwingungsenergie an einer bestimmten Stelle im Protein kann mithilfe eines IR Sensors detektiert werden. Die Kombination aus Azu als VET Heizelement und Azidohomoalanine (Aha) als VET Sensor mit transienter IR (TRIR) Spektroskopie wurde schon erfolgreich an kleinen Peptiden in der Dissertation von H. M. Müller-Werkmeister getestet, die der vorliegenden Dissertation in den Laboren der Bredenbeck Gruppe vorausging. Die Schwingungsfrequenz chemischer Bindungen ist hochempfindlich auf selbst kleine Änderungen der Konformation und Dynamik in der unmittelbaren Umgebung und kann mit IR Spektroskopie gemessen werden, z. B. mit Fourier Transform IR (FTIR) Spektroskopie. IR Spektroskopie bietet eine außergewöhnlich gute Zeitauflösung, die es ermöglicht, dynamische Prozesse in Molekülen auf einer Zeitskala von wenigen Picosekunden zu beobachten, wie z. B. die ultraschnelle Weiterleitung von Schwingungsenergie. Mit zweidimensionaler (2D)-IR Spektroskopie können die Relaxation von schwingungsangeregten Zuständen und strukturelle Fluktuationen um die schwingende Bindung untersucht werden. Allerdings geht die herausragende Zeitauflösung mit limitierter spektraler Auflösung einher. In größeren Molekülen mit zahlreichen Bindungen überlagern sich die Schwingungsbanden und die Ortsauflösung geht verloren. Um diese Limitierung zu überwinden, können IR Marker benutzt werden, chemische Gruppen, die in einer spektral durchsichtigen Region des Protein/Wasser Spektrums (1800 bis 2500 cm-1) absorbieren. Als ncAA können sie kotranslational in Proteine an einer gewünschten Stelle eingebaut werden und so ortsspezifische Informationen aus dem Proteininneren liefern. Aufgrund ihrer geringen Größe, eines relativ großen Extinktionskoeffizientens (350-400 M-1cm-1) und einer hohen Empfindlichkeit auf Änderungen in der lokalen Umgebung sind organische Azide (N3) wie zum Beispiel Aha besonders geeignete IR Marker. Aha kann als Methionin Analogon ins Protein eingebaut werden. ...

Download full text files

Export metadata

Metadaten
Author:Katharina Barbara Eberl
URN:urn:nbn:de:hebis:30:3-569253
Place of publication:Frankfurt am Main
Referee:Jens BredenbeckORCiD, Josef WachtveitlORCiDGND
Advisor:Jens Bredenbeck
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2020/11/16
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/11/13
Release Date:2020/11/19
Page Number:230
HeBIS-PPN:472512463
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht