• Treffer 18 von 41
Zurück zur Trefferliste

Loss of SRSF3 in cardiomyocytes leads to decapping of contraction-related mRNAs and severe systolic dysfunction

  • Rationale: RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. Objective:To investigate the role of SRSF3 in cardiac function. Methods and Results: Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. Conclusions: We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Paula Ortiz-Sánchez, María Villalba-Orero, Marina M. López-Olañeta, Javier Larrasa-Alonso, Fátima Sánchez-Cabo, Carlos Martí-Gómez, Emilio Camafeita, Jesús M. Gómez-Salinero, Laura Ramos-Hernández, Peter J. Nielsen, Jesús Vázquez, Michaela Müller-McNicollORCiD, Pablo García-Pavía, Enrique Lara-Pezzi
URN:urn:nbn:de:hebis:30:3-532811
DOI:https://doi.org/10.1161/CIRCRESAHA.118.314515
ISSN:0009-7330
ISSN:0931-6876
Titel des übergeordneten Werkes (Deutsch):Circulation research
Verlag:Lippincott Williams & Wilkins
Verlagsort:Baltimore, Md.
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Veröffentlichung (online):30.05.2019
Datum der Erstveröffentlichung:30.05.2019
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Datum der Freischaltung:15.06.2020
Jahrgang:125
Ausgabe / Heft:No. 2
Seitenzahl:14
Erste Seite:170
Letzte Seite:183
HeBIS-PPN:467081778
Institute:Medizin / Medizin
DDC-Klassifikation:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung-Nicht kommerziell - Keine Bearbeitung 4.0