• Treffer 4 von 29
Zurück zur Trefferliste

Argon- und Neon-Dimere und Trimere in intensiven Laserfeldern

  • Ziel der durchgeführten Experimente war es, die Zerfallsmechanismen Van-der-Waals gebundener Argon- und Neon Di- und Trimere in intensiven Laserfeldern zu untersuchen, um mehr über den Einfluss der schwachen Van-der-Waals Bindung auf die Dynamik des Ionisationsprozesses zu erfahren. Da Dimere aufgrund ihrer elektronischen Struktur sehr stark zwei separaten benachbarten Atomen gleichen, vereinen sie atomare und molekulare Eigenschaften in sich und ihre Untersuchung verspricht ein tieferes Verständnis der Wechselwirkungsmechanismen in starken Laserfeldern. Die Verwendung der Impulsspektroskopie Methode COLTRIMS ermöglichte die koinzidente Messung aller beim Aufbruch entstandener ionischer Fragmente sowie eines elektronischen Impulsvektors. Für die beidseitige Einfachionisation des Argon Dimers, konnten bei der gewählten Intensität (etwa 3.3E14W/cm2) drei unterschiedliche Ionisationsprozesse identifiziert werden, von denen zwei zu einer überraschend hohen kinetischen Gesamtenergie der Ionen führen. Aufgrund der Messung der Winkelverteilung der ionischen Fragmente und eines der emittierten Elektronen für lineare und zirkulare Polarisation gelang es, die den drei Prozessen zugrunde liegende Dynamik im Laserfeld zu entschlüsseln. Der dominierende Zerfallskanal stellt demzufolge eine schnelle sequentielle Doppelionisation des Argon Dimers dar, die noch am Gleichgewichtsabstand des Dimers stattfindet. Für den zweithäufigsten Ionisationsprozess ergaben sich zwei mögliche Erklärungsansätze: Entweder wird das Dimer zunächst einseitig doppelionisiert, so dass es auf einer attraktiven Potentialkurve zusammenläuft, bevor es zu einem späteren Zeitpunkt – wenn das Laserfeld bereits abgeklungen ist – durch eine Umverteilung seiner Ladungen in einer Coulomb Explosion fragmentiert, oder das Dimer wird bei einer beidseitigen Tunnelionisation zugleich angeregt, so dass die Coulomb Explosion von einer Potentialkurve erfolgt, die wesentlich steiler als 1/R verläuft. Der schwächste Zerfallskanal, der sich durch die höchste Gesamtenergie auszeichnet, ist auf eine "Frustrated Triple Tunnel Ionization" zurückzuführen, bei der ein hoch angeregter Rydberg Zustand erzeugt wird. Bei der Untersuchung des Neon Dimers konnte bei der gewählten Intensität (etwa 6.3E14W/cm2) nur die sequentielle beidseitige Einfachionisation identifiziert werden, obwohl die Daten Hinweise auf einen weitern Ionisationsprozess mit sehr geringer Statistik aufweisen. Zudem wurde in dieser Arbeit nach der Methode des Coulomb-Explosion-Imaging aus den in Koinzidenz gemessenen Impulsvektoren aller einfachgeladenen ionischen Fragmente eines Aufbruchs die geometrische Struktur der Cluster im Orts-und Impulsraum rekonstruiert. Die ermittelte Grundzustandswellenfunktion des Argon und Neon Dimers zeigt eine gute Übereinstimmung mit quantenmechanischen Berechnungen. Für das Argon und Neon Trimer konnten aus den gemessenen Impulsvektoren mittels einer numerischen Simulation die Bindungswinkel im Ortsraum bestimmt werden, so dass erstmals gezeigt werden konnte, dass diese Trimere gleichseitige Dreieckskonfigurationen aufweisen. Vergleiche mit theoretischen Berechnungen zeigen für die breite Winkelverteilung des Neon Trimers eine hervorragende Übereinstimmung, während die gemessene Winkelverteilung des Argon Trimers etwas breiter als die berechnete ist.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Birte UlrichGND
URN:urn:nbn:de:hebis:30-112333
Gutachter*in:Reinhard DörnerORCiDGND, Horst Schmidt-BöckingGND
Dokumentart:Dissertation
Sprache:Deutsch
Datum der Veröffentlichung (online):05.08.2011
Jahr der Erstveröffentlichung:2011
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:27.06.2011
Datum der Freischaltung:05.08.2011
HeBIS-PPN:272287660
Institute:Physik / Physik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoDeutsches Urheberrecht