• Treffer 8 von 16
Zurück zur Trefferliste

Neutroneneinfangquerschnitte von 63,65Cu und 69,71Ga bei 25 keV und 90 keV

  • Ziel der nuklearen Astrophysik ist es, die solare Häufigkeitsverteilung der Elemente zu erklären (siehe Seite 10, Abb. 1.1). Die Elemente bis zur Eisengruppe sind dabei unmittelbar nach dem Urknall und während verschiedener Brennphasen in Sternen durch Kernfusion entstanden. Da die Bindungsenergie pro Nukleon der Elemente in der Eisengruppe am höchsten ist, ist für den Aufbau schwererer Elemente keine Energiegewinnung durch Fusion geladener Teilchen mehr möglich und Neutroneneinfänge und Betazerfälle spielen die entscheidende Rolle für die Nukleosynthese. In Abhängigkeit von der Neutronendichte und der Temperatur wird dabei zwischen dem langsamen Neutroneneinfangprozess, dem s-Prozess, und dem schnellen Neutroneneinfangprozess, dem r-Prozess, unterschieden. Während der r-Prozess weit abseits der stabilen Isotope an der Neutronenabbruchkante statt findet, verläuft der Reaktionspfad des s-Prozesses entlang der stabilen Isotope am "Tal der Stabilität".

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Clemens Beinrucker
URN:urn:nbn:de:hebis:30:3-337192
URL:http://exp-astro.physik.uni-frankfurt.de/docs/beinrucker_13_master.pdf
Gutachter*in:René ReifarthORCiDGND
Betreuer:René Reifarth, Kerstin Sonnabend
Dokumentart:Masterarbeit
Sprache:Deutsch
Jahr der Fertigstellung:2013
Jahr der Erstveröffentlichung:2013
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Freischaltung:20.05.2014
HeBIS-PPN:341340979
Institute:Physik / Physik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoDeutsches Urheberrecht