• search hit 8 of 429
Back to Result List

Eine vergleichend-morphologische Analyse der regulären Borstenmuster der Lepidopterenlarven

  • 1. Die vorliegenden vergleichend-morphologischen Untersuchungen an den Borstenmustern der Larven der Lepidoptera wurden mit dem Ziel durchgeführt, die Kenntnis des Borstenmusters der Lepidopterenlarven zu vertiefen, die auf die Borstenmuster anwendbare vergleichendmorphologische Methodik zu verfeinern und damit auch clie Grundlagen für eine vergleichende Untersuchung der Borstenmuster auf höherer taxionomischer Ebene (Borstenmuster bei Insekten verschiedener Ordnungen) zu liefern. Dabei wurde angestrebt, das ermittelte Verhalten der Borstenmuster während der Phylogenie einer evolutionstheoretischen Interpretation zuzuführen. 2. Zunächst wurde ein kurzer überblick über die wesentlichsten Charakteristika der Borstenmuster der Lepidopterenlarven gegeben. Sie bestehen aus zweierlei Musterelementen - den Borsten (setae) und den sog. Poren (punctures); der charakteristische Bau dieser Musterelemente, ihre Funktion und ihr Verhalten während der Larvalentwicklung wurden erörtert. Die Borsten bilden ein System taktiler Sinnesorgane, während die Poren sehr wahrscheinlich über die Beanspruchung der Cuticula Auskunft geben. 3. Im Interesse einer rationellen Arbeitsweise wurde eine neue Einteilung der Muster und der Musterelemente in verschiedene Kategorien eingeführt. Die Einteilung geschah nach jeweils nur einem Gesichtspunkt, und zwar werden unterschieden: a) nach der Konstanz der Lage der Musterelemente - zwischen den konstanten regulären und den nicht konstanten irregulären Muster(elemente)n; b) nach dem erstmaligen Auftreten der Musterelemente während der Larvalentwicklung - zwischen primären (treten im 1. Larvalstadium auf), subprimären (im 2. Larvalstadium) und sekundären Musterelementen (treten erstmalig in einem späteren Larvalstadium auf); c) nach dem relativen phylogenetischen Alter der Musterelemente - zwischen archaiischen und neuen Musterelementen (z. B. archiprimären, neoprimären, archisubprimären Borsten usw.); d) nach der Größenordnung der Borsten - zwischen (propriorezeptorischen) Mikro- und (taktilen) Makroborsten. 4. In der vorliegenden Arbeit wurden nur die regulären Borstenmuster der Lepidopterenlarven behandelt und zwar nur die Borstenmuster der Kopfkapsel und des Rumpfes (die Sensillen der Kopfanhänge und die Borstenmuster der Thorakalbeine sind nicht berücksichtigt worden). Reguläre Borstenmuster liegen bei allen Larvalstadien der sog. "nackten" Raupen und auch im 1. Larvalstadium der sog. "behaarten" Raupen vor. Diese weisen in späteren Larvalstadien zahlreiche irreguläre Sekundärborsten auf. Im Gegensatz zu den irregulären Borstenmustern sind die regulären Borstenmuster bei den Lepidopterenlarven in den Grundzügen gleichartig, die einzelnen Musterelemente können daher homologisiert und die Differenzen in den Borstenmustern der rezenten Lepidopterenlarven systematisch ausgewertet werden (Chaetotaxie). 5. Das Problem der Homologie und Homonomie der regulären Musterelemente wurde grundsätzlich erörtert. Die Homologisierung der Musterelemente erfolgt primär durch Ermittlung komplexer übereinstimmungen (Grundmethode) , die auch den Hauptkriterien der Homologie nach REMANE zugrunde liegt. Vielfach ist auch eine indirekte Methode anwendbar, die darauf beruht, daß man von Merkmalen, die sich in der lmtersuchten Organismengruppe bei den nach der Grundmethode sicher homologisierten Musterelementen als unveränderlich erweisen, annehmen kann, daß sie auch bei denj enigen Vertretern der Gruppe nicht verändert worden sind, bei denen die Musterelemente nach Vergleichend . morphologische Analyse der regulären Borstenmuster der Grundmethode nicht mehr homologisiert werden können. Solche Merkmale können dann als mehr oder minder spezifische Kennzeichen homologer Musterelemente gelten. Da nach der Grundmethode sicher homologe Musterelemente in der Evolution auch durch "Parallelentwicklung" entstanden sein können, berechtigt diese Homologie nicht in jedem Einzelfall automatisch zum Schluß, daß die betreffenden Musterelemente direkt von einer gemeinsamen Ahnenform übernommen worden sind. Der Nachweis der direkten Herkunft eines Musterelementes von einer gemeinsamen Ahnenform ist in jedem Einzelfall erst durch die Analyse der Verteilung des Musterelementes bei den Vertretern der jeweils betrachteten Gruppe zu erbringen. Es wird daher zwischen einer Homologie im weiteren Sinne (Homologie s. 1. - infolge nicht zufällig übereinstimmender Merkmalskomplexe) und einer Homologie im engeren Sinne (Homologie s. str. - infolge direkter Übernahme der Struktur von einem gemeinsamen Vorfahren) untersehieden. Soweit bei Einzelmerkmalen von Homologie ge· sprochen wird, kann es sieh hierbei nur um die Homologie s. str. handeln (Hilfskriterien der Homologie nach REMANE). 6. Entspreehend der Unterscheidung der Homologie im engeren und weiteren Sinne wurde hier auch zwischen einer Homonomie s. 1. und einer Homonomie s. str. untersehieden. Homonomie s. str. liegt vor, WOlm die betrachteten meristischen Strukturen in der Evolution wirklieh einmal gleich bzw. gleichartig gewesen sind; für die Homonomie s. 1. wird diese Bedingung nicht gestellt, und es ist nur erforderlich, daß nicht zufällige komplexe Übereinstimmungen bei den meristischen Strukturen nachweisbar sind. Es konnte evident gemacht werden, daß die 4 verschiedenen segmentalen Borstenmustertypen (Prothorax, Meso· und Metathorax, Abdominalsegment 1-9, Analsegment) der Lepidopterenlarven nicht homonom s. str. sein können: die Differenzierung der ehemals gleichartigen (im engeren Sinne homonomen) Segmente in die entsprechenden 4 verschiedenen Segmenttypen ist in der Evolution sicher sehr viel früher erfolgt als die Ausbildung des regulären Borstenmusters der Lepidopterenlarven, so daß diese Borstenmuster auf den bereits differenten Segmenten von vornherein unterschiedlich angelegt worden sind. Homonom s. str. sind bis zu einem gewissen Grade nur die Borsten. muster des gleichen Segmenttypus (also des Meso- und Metathorax einerseits und der Abdominalsegmente 1-9 andererseits, wobei hinsichtlich des 9. Abdominalsegmentes Einsehränkungen zu machen sind). Die speziellen Methoden, die Homonomie s. 1. der regulären Musterelemente verschiedenen Segmenttypus festzustellen, wurden eingehend erörtert (S. 228). 7. Die Grundzüge der bisherigen versehiedenen Benennungssysteme der homologen Musterelemente der regulären Borstenmuster der Lepidopterenlarven wurden zusammenfassend dargestellt. 8. Die weitgehende Gleichartigkeit der regulären Borstenmuster nahezu aller Lepidopterenlarven und die bereits hinreichend gut fundierte Einsicht in die phylogenetische Verwandtschaft der älteren Teilgruppen der Lepidoptera (HENNIG 1953) ermöglichte es, die einzelnen evolutiven Abwandlungen im regulären Borstenmuster durch vergleichend-morphologische Untersuchungen zu erfassen und das ancestrale Borstemuust,er der Lepidopterenlarven bis zu einem gewissen Grade zu rekonstruieren. Dazu wurden außer den eigenen Untersuchungsergebnissen an über 100 Arten aus verschiedenen Lepidopterenfamilien alle die zahlreichen (vor allem in der larvalsystematischen) Literatur niedergelegten erreichbaren Daten über die regulären Borstenmuster der Lepidopterenlarven herangezogen. 9. Die hier angewendete Methode der Rekonstruktion ancestraler Strukturausprägungen an rezentem Material wurde eingehend dargestellt. Sie gründet sich auf den Prinzipien der Phylogenetischen Systematik nach HENNIG und beruht auf der Analyse der Ausprägungsformen von Einzelme1"7cmalen, wobei aus der Verteilung der Ausprägungsformen der Einzelmerkmale bei den Vertretern einer Gruppe auf die ursprüngliche (plesiomorphe) Ausprägungsform geschlossen wird, die auch bei der jüngsten gemeinsamen Ahnen/orm der betrachteten Gruppe vorgelegen haben muß. Die Sicherheit der Schlußfolgerung ist dabei abhängig von der Labilität des Einzelmerkmales (bzw. der Struktur), worunter hier die Häufigkeit verstanden wird, mit der die Ausprägungsform des Merkmals in der Evolution der betrachteten Gruppe in irgendeiner Weise abgewandelt worden ist. (Anhaltspunkte über die Labilität eines Merkmals oder einer Struktur sind in etwa durch die Zahl der monophyletischen Teilgruppen gegebenen, in denen mehr als eine Ausprägungsform des Mcrkmals oder der Struktur vorkommen.) Dem gegenüber wird als Flexibilität das Ausmaß der Mannigfaltigkeit in den Abwandlungsformen des Merkmals oder der Struktur in der Evolution einer Gruppe bezeichnet. Für die einzelnen Merkmale lassen sich Flexibilitätsgrenzen finden, die durch die extremsten Ausprägungsformen der Merkmale innerhalb der betrachteten Gruppe gegeben sind. Die Sicherheit der Aussage über die ancestrale Ausprägungsform eines Merkmals ist bei stabilen (d. h. nicht labilen) Merkmalen maximal und nimmt mit zunehmender Labilität des Merkmals ab (also mit der zunehmenden Häufigkeit von Abänderungen des Merkmals in der Evolution der Grnppe). Bei sehr labilen Merkmalen kann nur angegeben werden, innerhalb welcher Flexibilitätsgrenzen das Merkmal bei der Ahnenform ausgebildet gewesen sein muß. Die im einzehlen als plesioI)1orph (ancestral) ermittelten Merkmalsausprägungen ergeben dann insgesamt ein Bild der ancestralen Strukturen. Die Anwendung dieser Methode setzt eine sichere Kenntnis der phylogenetischen Verwandtschaftsbeziehungen der älteren Teilgruppen der betrachteten Gruppe voraus (was bei den Lepidoptera hinreichend gegeben ist); Vergleichend-morphologische Analyse der regulären Borstenmuster andernfalls sind Aussagen über die ancestrale Ausprägungsform nur hinsichtlich der stabilen Merkmale möglich. 10. Das ancestrale reguläre Borstenmuster der Lepidopterenlarven wurde soweit wie möglich rekonstruiert (Abschnitt 0), wobei im einzelnen die jüngsten gemeinsamen Ahnenformen der Glossata, Neolepidoptera, Eulepidoptera und Ditrysia (mit Af I-IV bezeichnet - s. S. 259) behandelt wurden. Da die plesiomorphen Schwestergruppen der Neolepidoptera, Eulepidoptera und Ditrysia, also die Dacnonypha (Eriocraniidae), Aplostomatoptera (Hepialidae) und Incurvariina (Incurvariidae, Adelidae) artenarm, "relictär" sind und offenbar zahlreiche Autapomorphien aufweisen, konnte über die älteren Ahnenformen weniger ausgesagt werden als über die jüngste gemeinsame Ahnenform der sehr artenreichen Ditrysia (Af IV). Das reguläre Borstenmuster der Rumpfsegmente der Af IV ließ sich so gen au rekonstruieren, daß es schematisch gezeichnet werden konnte (Abb. 19). Es ließ sich zeigen, daß die Larven dieser Ahnenformen der Lepidoptera nur das reguläre Borstenmuster besessen haben können, also vom Typus der "nackten" Raupen gewesen sind - Larven vom "behaarten" Raupentypus sind erst sehr viel später als Apomorphien in einzelnen apomorphen Lepidopterengruppen aufgetreten. 11. Im Laufe dieser Untersuchungen zeigte es sich, daß die Psychidae die älteste Teilgruppe der Ditrysia sein müssen. Sie haben nämlich (im larvalen Borstenmuster) symplesiomorphe Merkmalsausprägungen mit den "monotrysischen" Lepidoptera gemeinsam, während alle übrigen hier erfaßten Ditrysia (einschließlich Tineidae) in den gleichen Merkmalen synapomorph sind (S. 261). 12. Die beobachteten evolutiven Abwandlungen im regulären Borstenmuster der Lepidopterenlarven betreffen in der Regel nur einzelne Musterelemente, wobei die Abwandlung eines Musterteiles oder eines Merkmals eines Musterelementes im allgemeinen nicht zwangsläufig zu einer Abwandlung weiterer Musterteile oder weiterer Merkmale des Musterelementes geführt hat (nicht ausgeprägte bzw. geringe Kopplung bei der evolutiven Abänderung von Musterteilen oder der Merkmale eines Musterelementes). Häufige Abänderungen sind: Verlagerung des Ortes einzelner Musterelemente oder Musterelementgruppen, .Änderungen der Borstenform und der relativen Länge einzelner Borsten. Nicht ganz so häufig ist die Reduktion oder das Neuauftreten einzelner Musterelmente (darunter vor allem der sog. "labilen Borsten") . Außerordentlich selten sind .Änderungen des Zeitpunktes, in dem ein Musterelement während der Larvalentwicklung erstmalig auftritt (Subprimärwerden primärer Borsten) und die Umwandlung einer Pore in eine Borste. 13. Das Phänomen der Labilität wurde am Verhalten der sog. "labilen B01'8ten" in der Evolution eingehender untersucht. Die "labilen Borsten" sind archaische Musterelernente, die nur im Auftreten labil sind, während sie in allen anderen Merkmalen weitgehend stabil sind. Ihre Homologie s.1. ist auf Grund der übereinstimmenden Merkmalskomplexe gesichert. Es ließ sich zeigen, daß die labilen Borsten sowohl jeweils unabhängig reduziert als auch unabhängig voneinander aufgetreten sein können (polytope Entstehung der Borsten - "Parallelentwicklungen"), und es konnte auch wahrscheinlich gemacht werden, daß ein Wiederauftreten einmal reduzierter Musterelemente in der Evolution durchaus möglich ist. Weiterhin konnte demonstriert werden, daß im weiteren Sinne homonome Musterelemente auf verschiedenen Segmenten nicht unbedingt gleichzeitig in der Evolution aufgetreten zu sein brauchen (S. 335). 14. Aus den beobachteten Abwandlungsvorgängen und dem erschlossenen Verhalten der labilen Borsten wurde versucht, Anhaltspunkte über die phänogenetisohen Bedingtheiten bei der Bildung des regulären Borstenmusters zu gewinnen. Es zeigte sich, daß die Ausprägungsform der Merkmale jedes einzelnen Musterelementes für jedes Musterelement durch einen oharakteristischen Komplex von ontogenetischen Entwicklungsfaktoren bedingt sein muß, und es gibt Momente, die dafür sprechen, daß besonders die zur Homologisierung der Musterelemente herangezogenen Merkmale der einzelnen Musterelemente (Art des Musterelementes - Pore oder Borste, Ort, Größe und der Zeitpunkt des erstmaligen Auftretens während der Larvalentwicklung) entwicklungsphysiologisch enger korreliert sind. Der Komplex der Entwicklungsfaktoren jedes einzelnen Musterelementes wurde hier Musterlocus genannt. Ähnlich wie die regulären Musterelemente selber sind auch deren Loci (wenigstens theoretisch) homologisierbar. 15. Das Phänomen der "labilen Borsten" (polytope Entstehung von im weiteren Sinne homologen Borsten, Wiederauftreten eines Musterelementes nach erfolgter Reduktion) kann mit Hilfe des Begriffes der Musterloci so erklärt werden, daß die Loci nicht in jedem Falle morphologisch in Erscheinung treten müssen, sondern auch latent (virtuell bzw. morphogenetisch inaktiv) bleiben können. Durch direkte Übernahme solcher latenter Loci von einer gemeinsamen Ahnenform und durch die voneinander unabhängige Manifestation der Loci wird die polytope Entstehung von im weiteren Sinne homologen Borsten ohne weiteres verständlich - und damit ist auch ein Modell für die kausale Deutung der Pa1'ipotenz im Sinne von HAEoKER gewonnen. Bei der Reduktion (Wegfallen) eines Musterelementes wird offenbar der zugehörige Locus aus dem aktiven in den latenten Zustand versetzt, ohne daß das Gefüge des Locus zerstört oder wesentlich verändert wird, so eine erneute Manifestation des Musterelementes ermöglichend. 16. Das Inaktivwerden (Wegfallen, Reduktion des Musterelementes) bzw. die Aktivierung (Neuauftreten, Realisation oder Manifestation eines Musterelementes) eines Locus kann als Schwelleneffekt gedeutet werden: Vergleichend-morphologische Analyse der regulären Borstenmuster latente Loci sind unterschwellig, morphogenetisch aktive überschwellig. Reduktion und Manifestation können so als entgegengesetzt gerichtete SchweZlenübergänge eines Locus aufgefaßt werden. Die weiteren schwellentheoretischen Folgerungen über die HäufigkeitsverteiJung der labilen Borsten im regulären Borstenmuster der Lepidopterenlarven stimmen mit der beobachteten I-Iäufigkeitsverteilung gut überein. 17. Die ermittelten evolutiven Abänderungen im regulären Borstenmuster lassen sich - soweit sie qualitative oder quantitative Abänderungen der Ausprägungsform der einzelnen Merkmale betreffen - auf Änderungen des Gefüges der einzelnen Musterloci zurückführen, während Reduktion bzw. Neuauftreten als Unter- bzw. überschwelligwerden der Loci gedeutet werden können, wobei das Gefüge der Loci nicht entscheidend geändert wird. 18. Schließlich wurde der Versuch unternommen, an Hand bekannter entwicklungsphysiologischer und genetischer Tatsachen, eine kausale Interpretation der Schwellenübergänge der Loci zu geben. Die Realisation eines latenten Musterlocus ist dabei ein Beispiel für das Manifestwerden latenter Entwicklungspotenzen überhaupt. Am Beispiel der bereits lange bekannten Ommochrombildung bei Insekten wird auf die Existenz von "unvollständigen morphogenetischen Komplexen" hingewiesen, das sind morphogenetische Reaktionskomplexe, bei denen irgendein Glied einer für das Zustandekommen der Struktur unbedingt notwendigen entwicklungsphysiologischen Reaktionskette ausgefallen ist (etwa durch einen genetischen Block). Die Ausbildung der Struktur wird durch den Ausfall einer derartigen "sine-qua-non" -Bedingung verhindert, wobei jedoch alle übrigen Reaktionsglieder funktionstüchtig bleiben. Die latenten Loci lassen sich als derartige "unvollständige Morphogenesen" auffassen - durch Schließung der Lücke in der "Reaktionskette" wird die Morphogenese vollständig und der latente Locus morphologisch manifest. Umgekehrt bedeutet die Reduktion eines Musterelementes,daß eine sine-qua-non-Bedingtmg für das Musterelement ausgefallen und der Locus des Musterelementes mithin latent geworden ist. Das Verhalten der labilen Borsten in der Evolution der Lepidoptera läßt sich im Sinne der aufgestellten Schwellentheorie durch in der Evolution erfolgte unregelmäßige quantitative Schwankungen eines für das Zustandekommen der Musterelemente unbedingt notwendigen Entwicklungsfaktors (sine-qua-non-Bedingung) wiedergeben. Diese quantitativen Schwankungen des Entwicklungsfaktors sind ihrerseits auf die Veränderungen der Konstitution des Genoms während der Evolution zurückführbar, wobei die Quantität des Entwicklungsfaktors sicher polyfaktoriell bedingt ist. Die hier vorgelegte Konzeption der Realisierung virtueller Entwicklungspotenzen wurde als "Hypothese der unvollständigen morphogenetischen Komplexe" bezeichnet.

Download full text files

  • Ivar_Hasenfuss.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ivar Hasenfuss
URN:urn:nbn:de:hebis:30:3-232024
Parent Title (German):Zeitschrift für Morphologie und Ökologie der Tiere
Publisher:Springer
Place of publication:Berlin [u.a.]
Document Type:Article
Language:German
Date of Publication (online):2011/11/09
Year of first Publication:1963
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2011/11/11
Volume:52
Page Number:168
First Page:197
Last Page:364
Note:
Zugriffsbeschränkung: Bestandssicherung, Zugriff nur im internen UB-Netz
HeBIS-PPN:309337259
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG