• search hit 20 of 666
Back to Result List

Strukturelle Analyse des kupferexportierenden CusCBA-Systems von Escherichia coli und strukturelle Analyse des Suppressors der RNA-Interferenz B2 des Nodamura Virus

  • Strukturelle Analyse des CusCBA-Systems von Escherichia coli Kupfer ist als Kofaktor in vielen Enzymen ein essentielles Spurenelement. Die Aufrechterhaltung der Kupferhomöostase ist für die Zelle enorm wichtig, da es sich um ein redox-aktives Übergangsmetall handelt, das selbst in geringsten Konzentrationen toxisch wirkt. Gewöhnlich ist in der Zelle kein einziges freies Kupferion nachweisbar, da die Zelle redundante Mechanismen für die Detoxifikation von Kupfer besitzt. Ein Mechanismus zur Detoxifikation von Kupfer und Silber in E. coli ist das Cus-System. Es handelt sich um einen vierteiligen Effluxkomplex, der sich aus dem inneren Membranprotein CusA, dem periplasmatischen Membranfusionsprotein CusB und dem TolC ähnlichen äußeren Membranprotein CusC zusammensetzt. Das vierte Protein dieses Systems, CusF, dient im Periplasma als Kupferchaperon. Dieser Komplex ermöglicht das Ausschleusen von Cu(I)- und Ag(I)-Ionen aus dem Cytoplasma über das Periplasma und die äußere Membran in einem einzigen Schritt. In dieser Arbeit sollte die Röntgenstruktur des periplasmatischen Proteins CusB geklärt werden, um anhand struktureller Daten analysieren zu können wie CusA und CusC über CusB miteinander verbunden sind und welche Konformationsänderungen dabei vonstatten gehen. CusB wurde dafür über Ni2+-Chelat-Affinitätschromatographie und Größenausschluss-Chromatographie bis zur Homogenität gereinigt. Das Protein lag in Lösung als Monomer vor. Kristalle von CusB wurden nach der Dampfdiffusionsmethode des hängenden Tropfens hergestellt, wobei Kristalle in nur einem von 500 verschiedenen Ansätzen entstanden sind. Röntgenstreuung wurde bis zu einer Auflösung von 8 Å am ESRF (European Synchrotron Radiation Facility) in Grenoble gemessen. Die Streuung der Kristalle ließ starke Anisotropie und hohe Mosaizität erkennen. Um die Qualität der Kristalle von CusB zu verbessern, wurden Kristalle des Proteins ohne Hexahistidinanhängsel hergestellt. Diese Kristalle zeigten in Röntgenstreuungsexperimenten keine Verbesserung der Auflösung und Qualität. Die Röntgenstrukturen und Analysen durch Protease-Verdau von den zu CusB verwandten Proteinen AcrA und MexA zeigten, dass in diesen die N-Termini und C-Termini unstrukturiert sind. Deswegen wurden zunächst Konstrukte von CusB hergestellt in denen verschieden lange Bereiche des N-Terminus deletiert wurden. Ein Konstrukt von CusB, in dem die ersten 20 Aminosäuren deletiert waren, konnte in 10 von 500 Ansätzen kristallisiert werden. Nach Feinabstimmung der initialen Ansätze wurde für Kristalle dieses Konstrukts eine Auflösung von 5,3 Å am ESRF in Grenoble gemessen. Allerdings wies die Röntgenstreuung ebenfalls ein starke Anisotropie und Mosaizität auf, so dass die Struktur dieses Proteins nicht gelöst werden konnte. Strukturelle Analyse des RNAi-Suppressors B2 des Nodamura Virus: RNAi (RNA-Interferenz) bezeichnet einen sequenzspezifischen RNA-Degradationsprozess, um die Synthese eines Proteins zu verhindern. Zwei RNA-Typen wirken als Auslöser der RNAi: Doppelsträngige RNA dient als Vorläufer von siRNAs (small interfering RNAs), während einzelsträngige RNA mit Stamm-Schleifen-Strukturen als Vorläufer der miRNA (microRNA) dient. SiRNA und miRNA werden durch die Typ III Endonuklease Dicer im Cytoplasma produziert, sind 21-30 Nukleotide lang mit charakteristischen 2-NukleotidÜberhängen am 3’-Ende. Über den Komplex aus Dicer und dem doppelsträngige RNA-bindenden Protein R2D2 werden diese kleinen RNAs an das Protein Argonaute (AGO) abgeben. Dieses baut einen Strang der doppelsträngigen, kleinen RNAs über seine RNAse-Aktivität ab und hält den anderen (Führungs-) Strang gebunden. Daraufhin wird entweder komplementäre mRNA abgebaut oder die Translation komplementärer mRNA verhindert. RNAi dient im Organismus unter anderem der Verteidigung gegen Viren, wobei die Expression viraler Proteine durch RNAi verhindert wird. Durch Koevolution haben Viren allerdings Mechanismen zur Unterdrückung der RNAi in den Wirtszellen entwickelt. Ein RNAi Suppressor ist das Protein B2 des Nodamura Virus (NMV B2). Um Mechanismen und Gemeinsamkeiten der RNAi Suppression durch Viren analysieren zu können, wurde in dieser Arbeit die Röntgenstruktur der RNA bindenden Domäne von NMV B2 gelöst. Hierfür wurde ein Konstrukt (Aminosäuren 1-79) bis zur Homogenität aufgereinigt. Kristalle wurden mit einer Proteinkonzentration von 15 mg/ml mittels der Dampfdiffusions-Methode des hängenden Tropfens hergestellt. Diese wuchsen innerhalb von zwei Tagen als lange Nadeln mit Ausmaßen von 200 x 10 x 10 μm. Bei Messungen am ESRF in Grenoble wurde eine Auflösung bis 2,5 Å erreicht. Das Protein kristallisierte mit einem Dimer pro asymmetrischer Einheit. Die Kristalle wuchsen in der Raumgruppe P212121 mit den Einheitszelldimensionen a = 32.2, b = 56.6, c = 98.6. Die Phase wurde über molekularen Ersatz mit der Struktur des homologen Proteins B2 des Flock House Virus (FHV B2) bestimmt. Die Struktur stellte sich als ein gestrecktes Dimer mit einer Größe von ca. 55 x 10 x 15 Å, bestehend aus drei Alpha-Helices pro Monomer dar. Trotz geringer Sequenzidentität von NMV B2 und FHV B2 zeigten beide Strukturen ein Vier-Helix-Bündel, das von einer sehr kurzen Helix am C-Terminus bedeckt ist. Bei einem Vergleich der RNA-bindenden Aminosäurereste der beiden Strukturen fällt ein hoher Grad an Konservierung auf. Von zehn RNA-interagierenden Resten sind fünf identisch. Die RNA bindenden Reste werden von beiden Monomeren des Dimers beigetragen. So ist wohl mindestens ein Dimer für die RNA-Bindung durch B2 Proteine notwendig.

Download full text files

  • Dissertation_Stephanie_Koerber.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Stephanie Körber
URN:urn:nbn:de:hebis:30-74843
Referee:Julian Chen
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/03/08
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/10/01
Release Date:2010/03/08
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:41989568X
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG