• search hit 7 of 8
Back to Result List

CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes

  • CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Thea Katharina Wöbke, Andreas von KnethenORCiDGND, Dieter SteinhilberORCiDGND, Bernd L. Sorg
URN:urn:nbn:de:hebis:30:3-299243
DOI:https://doi.org/10.1371/journal.pone.0064635
ISSN:1932-6203
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/23696902
Parent Title (English):PLoS One
Publisher:PLoS
Place of publication:Lawrence, Kan.
Document Type:Article
Language:English
Date of Publication (online):2013/05/16
Date of first Publication:2013/05/16
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2013/05/17
Volume:8
Issue:(5): e64635
Page Number:16
Note:
Copyright: © 2013 Wöbke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
HeBIS-PPN:345715128
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Biochemie, Chemie und Pharmazie / Pharmazie
Fachübergreifende Einrichtungen / Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sammlung Biologie / Sondersammelgebiets-Volltexte
Licence (German):License LogoCreative Commons - Namensnennung 3.0