• search hit 2 of 95
Back to Result List

Addressing the biological function of the IQGAP1-WANP complex

  • Signal-dependent regulation of actin dynamics is essential for many cellular processes, including directional cell migration. In particular, cell migration is initiated by lamellipodia, actin-based protrusions of the plasma membrane. The formation of these protruding structures require incessant assembly and disassembly of actin filaments. The Arp2/3 complex and WAVE proteins are essential for both lamellipodium formation and its dynamics. WAVEs mediate the activation of the Arp2/3 complex downstream of the small GTPase Rac, thus being critical for Rac- and RTK-induced actin polymerization and cell migration. The WAVE-family proteins are always found associated with multiprotein complexes. The most abundant WAVE-based complex is referred to as the WANP (WAVE2-Abi-1-Nap1-PIR121) complex. IQGAP1 is a huge scaffolding protein with multiple protein-interacting domains. IQGAP1 participates in many fundamental activities, including regulation of the actin cytoskeleton, mitogenic, adhesive and migratory responses, as well as in cell polarity and cellular trafficking. IQGAP1 binds to N-WASP, thus raising the possibility that it might control actin nucleation by the Arp2/3 complex. In this study, IQGAP1 was found co-immunoprecipitated not only with WAVE, but also with the endogenous WANP-complex subunits. Correspondingly, IQGAP1 associated to both anti-WAVE and anti-Abi-1 immuno-complexes. Pull-down experiments proved that IQGAP1 binds directly to the WANP-complex subunits. Physical interaction between IQGAP1 and the reconstituted WANP complex could also be demonstrated. Together, these data indicate that IQGAP1 is an accessory component of the WANP complex. Interestingly, the IQGAP-WANP complex disassembled after either EGF stimulation or transfection with constitutively active Cdc42 and Rac1. HeLa cells devoid of IQGAP1 showed diminished and less persistent ruffling upon EGF, but not HGF, stimulation in comparison with the control. This phenotype was accompanied by a strong reduction in chemotaxis towards both growth factors, which was as dramatic as in WANP-complex knockdown (KD) cells. Moreover, GM130 and Giantin showed a polarized and flat ribbon-like pattern in control cells, as it is expected for cis- and cis/medial-Golgi markers. Conversely, small and dispersed vesicular structures were found in both IQGAP1 KD and WANP-complex KD cells. Importantly, Arp2/3-complex silencing resulted in the same phenotypes. Consistently, Brefeldin A-induced disassembly of the Golgi strongly inhibited the IQGAP1-WANP-complex interaction and chemotaxis towards EGF in wild-type cells. The re-expression of an RNAi-resistant wild-type IQGAP1 in IQGAP1 KD cells fully rescued both the ruffling abilities and Golgi structure. A constitutively active mutant, unable to bind to neither Rac1 /Cdc42 nor the WANP complex, could reconstitute only the former defect. Hence, this study shows that actin dynamics regulated by the IQGAP1-WANP complex controls Golgi-apparatus architecture and its contribution to cell chemotaxis. The working model here proposes that at the Golgi apparatus, recruitment of the WANP complex by IQGAP1 leads to the assembly of actin filaments required to maintain the appropriated Golgi morphology. The dissociation of the complex may be required to allow the remodeling of the Golgi membranes in order to respond following a chemoattractant gradient.

Download full text files

  • PhD_thesis_MASCHERONI_09.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Debora Mascheroni
URN:urn:nbn:de:hebis:30-92851
Referee:Anna Starzinski-PowitzORCiDGND, Ivan ĐikićORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2011/03/03
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2011/03/03
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:425126153
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG