• search hit 1 of 1
Back to Result List

Time-resolved mass spectrometry

  • Many processes in living cells involve interaction and cooperation of multiple proteins to fulfill a specific function. To understand biological processes in their full complexity, it is not sufficient to only identify the molecules being involved but also to understand the kinetic aspects of a reaction. Mass spectrometry (MS) is a very powerful tool which allows to precisely identify the molecules of a reaction. Usually this is done with tandem-MS experiments for purpose of de-novo peptide sequencing. However, since this involves protein digestion, a statement of the in-vivo constitution of non-covalently bound protein complexes is not possible. In order to detect an intact protein complex it is necessary to analyze the biological system softly and in a near-native environment with native MS. Native MS allows the non-destructive analysis of these non-covalent protein complexes as well as to detect their components. However, up to now native MS does not offer a possibility to resolve the timing of the constitution of protein complexes on a fast time-scale. Therefore, the progress of reactions on fast time-scales is invisible. However, a method which delivers both types of information - identification of the components of a protein complex, as well as time-resolving their interaction - would be of high interest. A suitable ionization technique for native MS is laser-induced liquid-bead ion desorption (LILBID). LILBID employs well-defined droplets which are irradiated by IR laser pulses to generate gas phase ions. The not-continuous, repetitive nature of ion generation offers itself to the development of a time-resolved (TR) native MS system which is able to investigate protein complexes on a fast time scale. The LILBID-droplets can serve as reaction vessels if they are levitated in an electrodynamic Paul-trap. This new setup would allow sample manipulation and MS analysis on precise and fast reaction time-scales. The first part of this dissertation presents the construction and characterization of a setup for TR-LILBID-MS. An example for a complex biological system is the self-assembly of beta-amyloid (Aβ). This small peptide is the major component in plaques related to Alzheimer’s disease. Clinically relevant is especially the 42 amino acid peptide Aβ42 which aggregates from monomers to oligomers through to fibrils. The oligomers are the neurotoxic species in this process and thus of high interest. Nevertheless, standard analytical techniques are unable to detect those oligomers which makes MS an optimal tool to study the oligomerization process of Aβ with the focus on disease relevant oligomers. TR-LILBID-MS allows to follow the oligomerization of Aβ enabling to study molecules which influence this kinetic. Combining MS with ion-mobility spectrometry adds an additional dimension - the collision cross section - to the mass-to-charge ratio obtained from MS. Therewith structural alterations induced by ligands can be correlated to differences in the aggregation kinetic. This allows to draw a picture of the aggregation process of Aβ for the development of disease-relevant small oligomers on a molecular level.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tobias LiebleinORCiDGND
URN:urn:nbn:de:hebis:30:3-516370
Place of publication:Frankfurt am Main
Referee:Nina MorgnerORCiDGND, Josef WachtveitlORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/10/31
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/10/30
Release Date:2019/11/01
Page Number:158
HeBIS-PPN:454891261
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht