Untersuchungen zum Einbau von Analytionen in MALDI Matrizes sowie zur Ionisation und Adduktbildung in der MALDI-Massenspektrometrie

  • Durch die beiden Ionisationstechniken Matrix-Assisted Laser Desorption/Ionization (MALDI) und Electrospray-Ionization (ESI) sind Biopolymere für die Massenspektrometrie zugänglich geworden und die Zahl der biochemischen Applikationen ist sprunghaft angestiegen. Dagegen sind die zugrundeliegenden Prozesse der Ionenbildung nur zum Teil bekannt. Bei MALDI wird die Laserstrahlung durch die Matrix absorbiert, wodurch es zur explosiven Auflösung der festen Phase unter Bildung von geladenen Molekülen kommt. Der genaue Mechanismus vom Festkörper zum gasförmigen Ion ist nur teilweise aufgeklärt und Gegenstand vieler Diskussionen. Eine wichtige Funktion der Matrix ist die räumliche Separierung und Isolierung der Analyte beim Einbau in die Matrixkristalle. Während der Einschluß von Molekülen in Wirtskristalle schon früh als wesentliches Merkmal von MALDI erkannt wurde, ist bisher noch nicht systematisch untersucht worden, in welcher Form die Analyte im Kristall vorliegen. Genau diese Information ermöglicht jedoch Aussagen über die Relevanz verschiedener Mechanismen der Ionenbildung bei MALDI. Die Bestimmung des Ausgangszustandes des Analyten im Matrixkristall und die Abschätzung möglicher Reaktionen bei der nachfolgenden Freisetzung der Analytionen ist das zentrale Thema der vorliegenden Arbeit. In dieser wurde insbesondere der Ladungszustand der Analyte sowie der Einschluß von Lösungsmittel untersucht. Des weiteren wurden Experimente zur Zahl und Koordination möglicher Gegenionen, zur Neutralisation dieser Ionenpaare und zur Adduktbildung bei MALDI durchgeführt. Die Ergebnisse erlauben Aussagen über primäre und sekundäre Ionisationsreaktionen, die zu einem stimmigen Bild der Ionenbildung bei MALDI zusammengefaßt wurden. Grundlage des vorgestellten Modells sind bereits veröffentlichte Modelle, deren wesentliche Aspekte teilweise schon in den ersten Jahren nach der Einführung von MALDI, zu einem erheblichen Teil aber erst in jüngster Zeit erkannt wurden. Einen erneuten Anstoß für die Diskussion um den Mechanismus von MALDI gab die Hypothese, daß die Ionisation eng mit der Bildung von Clustern verbunden ist und dabei sowohl eine Freisetzung präformierter Ionen als auch nachfolgende Reaktionen unter Transfer von Protonen und Elektronen erfolgen. Der Ausgangspunkt für all diese Prozesse ist der Analyt im Matrixkristall. Die in dieser Arbeit vorgestellten Experimente zeigen, daß einige wesentliche Postulate des "Cluster-Modells" richtig sind. Insbesondere konnte der Beweis geführt werden, daß Analyte geladen im Matrixkristall existieren und daß die gelöste Form des Analyten weitgehend im Matrixkristall konserviert wird. Als einfache Testsysteme wurden Matrixlösungen mit verschiedenen pH-Indikatoren versetzt und die Farbe der Kristalle dokumentiert. Dabei zeigte sich, daß in Abhängigkeit vom pH-Wert der Lösung sowohl Moleküle mit einer positiven oder negativen Nettoladung als auch neutrale Zwitterionen gleichermaßen effizient in Matrixkristalle eingebaut werden. Die Ladung aller sauren und basischen funktionellen Gruppen des Analyten im Kristall ist damit durch den pH-Wert der Matrixlösung bestimmt. Wenn eine Nettoladung vorhanden ist, muß zudem diese Ladung durch Gegenionen kompensiert sein, so daß Ionenpaare entstehen. Aber auch bei Zwitterionen können Gegenionen vorhanden sein. Darüber hinaus gelang durch 1H-NMR-Spektroskopie der Nachweis, daß Lösungsmittel im Kristall eingeschlossen ist und selbst nach Trocknen der Kristalle bei erhöhter Temperatur oder im Vakuum dort verbleibt. Dies führt zu dem anschaulichen Bild, daß Analyte in Abhängigkeit vom pH-Wert als "Multi-Ionenpaare" und partiell solvatisiert im Matrixkristall konserviert werden. Ausgehend von diesen präformierten, solvatisierten Ionenpaaren wird durch den plötzlichen Energieeintrag des Laserpulses die explosive Bildung von Clustern ausgelöst. Für die Bildung von geladenem Clustern gibt es zwei plausible Erklärungsansätze. Durch die Existenz der geladenen Analyte im Kristall ist eine besonders einfache Ionisation unter Freisetzung "präformierter" Ionen durch die Trennung eines Ionenpaares denkbar. Eine zweite Möglichkeit wäre die Photoionisation eines Matrixmoleküls mit nachfolgendem Protonentransfer. Da aber stets negative Ladungen vorhanden sind (entweder im Analyten selbst oder als Gegenion), wird bevorzugt ein Anion neutralisiert. In beiden Fällen entsteht ein Cluster, der durch ein fehlendes oder neutralisiertes Gegenion geladen ist. Die Freisetzung des Analytions erfolgt durch Verdampfen von Neutralmolekülen (Matrix, Lösungsmittel). Ionenpaare werden durch Protonentransfer neutralisiert, so daß kleine Neutralmoleküle abdampfen und mit Ausnahme von Metallkationen keine ionischen Addukte detektiert werden. Der Protonierungsgrad des Analyten beim Einbau hat einen erheblichen Einfluß auf die detektierten Ionen. Sind bereits in Lösung und damit im Kristall positiv geladene Gruppen vorhanden, werden besonders leicht protonierte Molekülionen gebildet. Dagegen entstehen aus deprotonierten Vorläuferionen (in der Regel negativ geladen) verstärkt kationisierte Molekülionen. Dabei ist nicht die Nettoladung entscheidend, sondern die Existenz und Anzahl positiver und negativer Gruppen im Analyten. Die Kationisierung erfolgt bereits im Kristall, da die Ionen eine hohe, MALDI-typische Anfangsgeschwindigkeit zeigen. Die Koordination der Kationen an der negativen Ladung verhindert die Neutralisation durch Protonierung, die wesentlich für die Freisetzung von protonierter Molekülionen ist. Diese Neutralisation von Ionenpaaren ist auch die Ursache dafür, daß Anionenaddukte normalerweise nicht nachgewiesen werden. Durch Zugabe einer sehr starken Säure wird jedoch diese Zwischenstufe stabilisiert und erscheint in Form von Anionenaddukten im Spektrum. Dabei zeigte sich, daß die Anzahl der detektierten Addukte mit der Zahl der basischen Stellen im Analytmolekül korreliert, welches den Einbau von (mehrfach) geladenen Analytionen zusammen mit ihren Gegenionen bestätigt. Neben der Koordination der Anionen an positiv geladenen Stellen des Analyten ist die Energiebilanz des Protonentransfers dafür entscheidend, ob die Anionenaddukte den MALDI-Prozeß überstehen, so daß Anionen mit einer vergleichsweise geringen Gasphasenbasizität zur Adduktbildung neigen. Des weiteren kann die Konkurrenz verschiedener Anionen bei der Bildung der Ionenpaare eine Verschiebung der Adduktverteilung bewirken. Aber auch eine höhere Energiezufuhr (z.B. durch höhere Laserenergie) bewirkt eine verstärkte Neutralisation der Ionenpaare, wobei ein erheblicher Anteil metastabiler Fragmentierungen auftritt. Die Koordination von Gegenionen und die "metastabile Neutralisation" führt bei Verbindungen, die zur Ionenpaarbildung neigen, zur Peakverbreiterung und zu einer begrenzten Auflösung. Darüber hinaus sind bei MALDI weitere Sekundärreaktionen beteiligt. Dazu zählt die Übertragung von Wasserstoffatomen, die wahrscheinlich auch die Ursache für prompte Fragmentierungen ist (in-source decay, ISD). Ob eine Ladungsreduktion mehrfach geladener Vorläuferionen durch Elektronen auch bei Biopolymeren eine wesentliche Rolle spielt, bleibt dagegen weiterhin offen. Durch die in Abhängigkeit von der Nettoladung zunehmende Coulomb- Anziehung der koordinierten Gegenionen werden vermutlich erst gar keine hochgeladenen Ionen in die Gasphase freigesetzt. Die vorgestellten Ergebnisse ergeben ein plausibles, qualitatives Bild der Ionenbildung bei MALDI. Es wurde gezeigt, daß die gelöste Form des Analyten inklusive Ladungen, Gegenionen und Solvathülle bei der Kristallisation weitgehend erhalten bleibt, und daß diese Ausgangssituation entscheidend für die Art der letztendlich gebildeten Gasphasenionen ist. Zudem ist nicht die Protonierung neutraler Analyte, sondern eine Neutralisation von Ionen(paaren) durch Protonentransfer ein zentraler Bestandteil von MALDI.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ralf Krüger
URN:urn:nbn:de:hebis:30-0000003344
Referee:Michael KarasGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/12/15
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2003/10/24
Release Date:2003/12/15
HeBIS-PPN:11652958X
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht