Protein-protein docking and Brownian dynamics simulation of electron transfer proteins

  • Im ersten Teil dieser Arbeit sind Protein-Protein Docking-Studien dokumentiert. Bis heute konnten die meisten Protein-Komplex-Strukturen nicht experimentell aufgeklärt werden, so auch die beiden oben genannten Elektrontransfer-Komplexe. Nach einem erfolgreichen Test wurden verschiedene Cytochrom c Oxidase:Cytochrom c Paare mit der gleichen Methode gedockt: COX aus Paracoccus denitrificans mit Pferdeherz Cytochrom c und COX mit dem löslichen Fragment des membrangebundenen Cytochrom C552 (beide aus P. denitrificans). Im zweiten Teil dieser Arbeit wurde die diffusive Annäherung des Cytochrom c an die Cytochrom c Qxidase mit der Brownschen Dynamik Methode simuliert. Die Diffusionsbewegung eines Brownschen Teilchens in wässriger Lösung wird durch die Langevin-Gleichung bestimmt. Der auf dieser Gleichung fußende Ermak-McCammon-Algorithmus ist Grundlage der Simulationsmethode. Die so ermittelten Raten für COX und Pferdeherz, sowie für COX und Cytochrom C552, wurden dann mit experimentell gewonnenen Raten verglichen. Da die Elektrostatik für den Annäherungsprozeß dieser Proteine eine so gewichtige Rolle spielt, wirken sich Mutationen, die mit einer Ladungsänderung einhergehen, merklich aus. Dies ist vor allem dann der Fall, wenn sich die Mutation in der Nähe der Bindungsstelle befindet. Aus dem gleichen Grund ist die Assoziationsrate auch stark von der Ionenstärke der umgebenden Lösung abhängig. Steigt die Ionenkonzentration wird die elektrostatische Komplementarität der Bindingsstellen der beiden Makromoleküle stärker abgeschirmt, und die Rate sinkt. Diese beiden relativen Trends konnten durch die Simulationen gut reproduziert und bestätigt werden. Allerdings liegen die absoluten Resultate merklich über den experimentell gemessenen Raten. Es ist sehr gut möglich, daß post-diffusive Effekte, die nicht in einer Brownschen Dynamik Simulation von starren Körpern berücksichtigt werden können, die Raten erniedrigen. Um den Einfluß der Membranumgebung auf die Wechselwirkung des Elektrontransportsystems zu untersuchen. wurde eine DPPC Doppelschicht um die Oxidase modelliert und energieminimiert. Mit Poisson-Boltzmann Rechnungen wurde das elektrostatische Potential dieses Nanosystems untersucht und mit dem der einzelnen Oxidase verglichen. Durch einen modifizierten Set-up konnten dann auch für dieses Membransystem Brownsche Dynamik Simulationen durchgeführt werden. Der Vergleich mit den vorhergehenden Simulationen ohne Membran erbrachte bemerkenswerte Ergebnisse. Während die Assoziationsraten für Pferdeherz Cytochrom c durch den Membraneinfluß erniedrigt wurden, stiegen sie im Fall des physiologischen Transferpartners c552. Pferdeherz Cytochrom c weist eine positive Nettoladung und einen ausgeprägten bipolaren Charakter auf. Eine große Zahl positiv geladener Seitenketten befindet sich auf der gleichen Hemisphäre wie die Bindungsstelle. Obwohl die DPPC Lipidmoleküle neutral sind, zeigten die Elektrostatikrechnungen, daß die Membranoberfläche abstoßend auf positive Ladungen wirkt. Da sich nun die Bindungsstelle der Oxidase für Cytochrom c nur etwa 10 Å oberhalb der Membran befindet, verringert sich die Wahrscheinlichkeit der Assoziation.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dagmar Flöck
URN:urn:nbn:de:hebis:30-0000003261
Referee:Werner MänteleORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2003/11/21
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2003/10/20
Release Date:2003/11/21
HeBIS-PPN:115278966
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht