Spin-one color superconductivity in cold and dense quark matter

  • Hinreichend kalte und dichte Quarkmaterie ist ein Farbsupraleiter. Ähnlich wie Elektronen in einem gewöhnlichen Supraleiter bilden Quarks Cooper-Paare. Während bei Elektronen der Austausch von Phononen zu einer Anziehung führt, ist im Falle von Quarks der Antitriplett-Kanal der starken Wechselwirkung attraktiv. Arbeiten in den letzten Jahren haben verschiedene Phasen von farbsupraleitender Quarkmaterie untersucht und sich dabei vor allem auf Phasen konzentriert, m denen der Gesamtspin eines Cooper-Paares verschwindet. In der vorliegenden Dissertation habe ich hauptsächlich Farbsupraleiter diskutiert, deren Cooper-Paare im Spin-Triplett-Kanal kondensieren, d.h. die Cooper-Paare haben den Gesamtspin 1. Diese Art von Supraleiter ist möglicherweise relevant für Systeme in der Natur, wie z.B. das Innere von Neutronensternen. Denn bei der Spin-0-Farbsupraleitung wird vorausgesetzt, dass die Fermi-Impulse zweier Quark-Flavor gleich ist oder zumindest hinreichend klein, was für realistische Systeme, also für nicht zu große Dichten, fragwürdig ist. Diese Einschränkung gibt es im Falle von Spin-1-Farbsupraleitern nicht, da hier Quarks des gleichen Flavors Cooper-Paare bilden. Ich habe in meiner Dissertation die verschiedenen möglichen Phasen eines Spin-1-Farbsupraleiters systematisch klassifiziert. Dies wurde mit Hilfe von gruppen-theoretischen Methoden durchgeführt, basierend auf der Tatsache, dass die Farbsupraleitung durch das theoretische Konzept der spontanen Symmetriebrechung beschrieben werden kann. Ähnlich wie bei supraflüssigem Helium-3 gibt es eine Vielzahl theoretisch möglicher Phasen. Ich habe die physikalischen Eigenschaften von vier dieser Phasen untersucht, nämlich der polaren und planaren Phasen sowie der A- und CSL-(color-spin-locked)Phasen. Mit Hilfe der QCD-Lückengleichung wurde die Energielücke sowie die kritische Temperatur bestimmt. Es stellt sich heraus, dass die Energielücke eines Spin-1-Farbsupraleiters um 2-3 Größenordnungen kleiner ist als die eines Spin-0-Farbsupraleiters, d.h. sie liegt im Bereich von 10 - 100 keV. Zwei besondere Eigenschaften der Energielücke werden diskutiert, nämlich eine 2-Lücken-Struktur, die in zwei der untersuchten Fälle auftritt, sowie mögliche Anisotropien, insbesondere Nullstellen der Lückenfunktion. Die Berechnung der kritischen Temperatur zeigt, dass es durchaus farbsupraleitende Materie in einer Spin-1-Phase im Innern von Neutronensternen geben kann, da die Temperatur von alten Neutronensternen im Bereich von einigen keV oder sogar darunter liegt. Darüber hinaus wurde die Frage untersucht, ob ein Farbsupraleiter auch ein gewöhnlicher Supraleiter ist. In diesem Zusammenhang ist die Frage von Interesse, ob ein Spin-1-Farbsupraleiter gewöhnliche Magnetfelder aus seinem Innern verdrängt, was sicherlich Auswirkungen auf die Observablen eines Neutronensterns hätte. Tatsächlich stellt sich heraus, dass ein Spin-1-Farbsupraleiter, im Gegensatz zu einem Spin-0-Farbsupraleiter, einen elektronmagnetischen Meissner-Effekt aufweist. Dieses Ergebnis wurde mit Hilfe von gruppentheoretischen Überlegungen vorausgesagt und mit Hilfe einer detaillierten Berechnung der Photon-Meissner-Massen bestätigt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Andreas Schmitt
URN:urn:nbn:de:hebis:30-0000004880
Referee:Dirk H. RischkeORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2004/12/09
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/07/20
Release Date:2004/12/09
HeBIS-PPN:125318545
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht