Entwicklung eines Laserkalibrationssystems für die Spurendriftkammern des Experiments NA49

  • Diese Arbeit entstand im Rahmen des Schwerionenexperiments NA49 am CERN. Auf der Suche nach einem neuen Zustand von Kernmaterie, dem Quark-Gluon-Plasma, werden dort im SPS (Super-Proton-Syncrhotron Bleiionen auf eine Energie von 158 GeV pro Nukleon beschleunigt und dann auf eine dünne, im Laborsystem ruhende, Bleifolie (Target) gelenkt. Ziel ist es, in zentralen Stößen zweier Bleikerne ein ausgedehntes Volumen hochkomprimierter und heißer stark wechselwirkender Materie zu erzeugen. Kernmaterie im Grundzustand besitzt eine Dichte von rho o ~ 0,14 Nukleonen pro Kubikfermi. Damit ergibt sich mit der Masse der Nukleonen von etwa 939 MeV/c exp 2 eine Energiedichte im Grundzustand von 130 MeV/fm exp 3. Theoretische Überlegungen im Rahmen der Quantenchromodynamik (QCD, die Eichtheorie der starken Wechselwirkung) sagen voraus, daß sich bei einer Energiedichte von etwa 2-3 GeV/fm exp3 und einer Packungsdichte der hadronischen Materie von 10-15 rho 0 die normalerweise in den Hadronen eingeschlossenen Quarks aus ihren Bindungen lösen. Aufgrund dieses als deconfinement bezeichneten Vorgangs könnte ein Plasma aus freien Quarks und Gluonen entstehen. Die letzteren sind die Eichbosonen der starken Wechselwirkung. Ein solcher Zustand hat einige Mikrosekunden nach dem Urknall exisitiert und wird heute im Innern von Neutronensternen vermutet. Die Lebensdauer dieses hochkomprimierten und heißen Zustands während einer Schwerionenkollision ist mit T * 10 exp -23zu kurz, um direkt beobachtet werden zu können. Daher versucht man, aus den hadronischen Reaktionsprodukten Rückschlüsse auf diesen Zustand zu ziehen. Wichtige Meßgrößen sind die Rapidität y und der Transversalimpuls pT der Teilchen nach der Reaktion. Die Rapidität ist ein Maß für die longitudinale Geschwindigkeit der Teilchen entlang der Strahlrichtung. Aus der Rapiditätsverteilung nach dem Stoß kann man bestimmen, wie stark die Projektilnukleonen abgebremst wurden und wieviel Energie somit in der Reaktionszone deponiert wurde. Ein Großteil dieser Energie wird zur Produktion von Hadronen benutzt. Die Transversalimpulsverteilung dieser Teilchen ähnelt der einer thermischen Verteilung. Damit kann im Rahmen von thermodynamischen Modellen der Reaktionszone (Feuerball) eine Temperatur zugeschrieben werden. Durch Messung von Zwei-Pion-Korrelationen kann auf die Größe des Reaktionsvolumens zum Zeitpunkt der Entkopplung der Hadronen von der Reaktion geschlossen werden. Sowohl die Multiplizität der Hadronen als auch ihre "chemische" Zusammensetzung (z.B. Pion, Kaon oder Lambda) liefern wichtige Randbedingungen für Modellvorstellungen über die Dynamik einer Schwerionenkollision. Dazu ist es notwendig, nicht nur die Anzahl der Hadronen pro Ereignis zu messen, sondern auch diese Teilchen zu identifizieren.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Oliver Hadeler
URN:urn:nbn:de:hebis:30-13601
URL:http://www.ikf.physik.uni-frankfurt.de/IKF-HTML/highenergy/thesis.html
Advisor:Rainer Arno Ernst Renfordt
Document Type:diplomthesis
Language:German
Date of Publication (online):2005/08/08
Year of first Publication:1995
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2005/08/08
HeBIS-PPN:184916216
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht