Kollektiver Fluß in Schwerionenkollisionen - Deduktion elementarer Eigenschaften angeregter Kernmaterie

  • Abschließend sollen hier die wichtigsten, neuen Ergebnisse herausgestellt und ein Ausblick auf mögliche zukünftige Studien gegeben werden. In dieser Arbeit wurden vorwiegend Schwerionenkollisionen bei Einschußenergien zwischen ungefähr 40 MeV/Nukleon und 400 MeV/Nukleon mit dem Quantenmolekulardynamik-Modell untersucht. Ein Schwerpunkt war hierbei die Beschreibung der Umkehr des kollektiven, transversalen Seitwärtsflusses in der Reaktionsebene. Der negative Seitwärtsfluß, der bei niedrigen Energien der Größenordnung kleiner als 100 MeV/Nukleon durch die attraktiven Wechselwirkungen verursacht wird, verschwindet bei Steigerung der Einschußenergie bei der Balance-Energie E-bal. einsetzt. Oberhalb dieser dominieren die repulsiven Wechselwirkungen, so daß positiver transversaler Fluß einsetzt. Sowohl die negativen Flußwinkel als auch der Übergang hin zu positiven Flußwinkeln konnte fur eine große Anzahl verschiedener Energien und Stoßparameter mit unterschiedlichen Zustandsgleichungen für die Systeme 40-20-Ca + 40-20-Ca und 197-79 Au + 197-79 Au mit dem Quantenmolekulardynamik-Modell beschrieben werden. Ziel muß es bleiben, die verschiedenen, grundlegenden physikalischenWechselwirkungen eindeutig und unabhängig voneinander zu bestimmen. Ein erfolgversprechender Weg sind die hier vorgestellten Methoden und die Hinweise zur ad quaten Interpretation experimenteller Ergebnisse. Die Abhängigkeit der Balance-Energien von der Masse des betrachteten Systems ist sehr sensitiv auf den Nukleon-Nukleon Wirkungsquerschnitt im Medium. Hier wurde systematisch gezeigt, daß die Balance-Energien stark vom Stoßparameter abhängen. Die Zunahme der Balance-Energie mit dem Stoßparameter ist ungefähr linear. Für das System Ca+Ca kann sich die Balance-Energie beim Übergang von zentraleren zu mittleren Stoßparametern mehr als verdoppeln. Daher ist für die Interpretation der gemessenen Balance-Energien in bezug auf eine Modifikation des nukleo- nischen Wirkungsquerschnitts im Medium oder der Zustandsgleichung eine genaue Kenntnis des Stoßparameters von größter Wichtigkeit. Vorläufige experimentelle Analysen scheinen die vorhergesagte Stoßparameterabhängigkeit sehr gut zu bestätigen [Wes 95]. Weiterhin hat sich herauskristallisiert, daß bei der Berücksichtigung impulsabhängiger Wechselwirkungen die Balance-Energien bei größeren Stoßparametern signifikant kleiner sind als für den Fall der Nichtberücksichtung. Daher konnten experimentelle Bestimmungen der Balance- Energien bei größeren Stoßparametern signifikante Hinweise auf die tatsächliche Bedeutung der impulsabhängigen Wechselwirkungen in diesem Energiebereich geben. Es wurde gezeigt, daß für schwere Systeme wie Au+Au die langreichweitige internukleare Coulomb-Wechselwirkung vor dem Kontakt der Kerne im Energiebereich der Balance-Energien nicht vernachlässigt werden darf. Die hervorgerufene Repulsion bewirkt eine Drehung des Systems. Während in diesem gedrehten System dynamischer negativer Fluß beobachtbar ist, ist er es nicht im Laborsystem. Die im gedrehten Kontaktbezugssystem bestimmten Balance- Energien fur Au+Au sind erwartungsgemäß kleiner als für Ca+Ca und nehmen mit wachsendem Stoßparameter zu. Ein neuartiger Zwei-Komponenten-Fluß konnte in semiperipheren Kollisionen von Ca+Ca be- schrieben und analysiert werden. Dabei wird in einem Ereignis in verschiedenen Rapiditätsbereichen gleichzeitig positiver und negativer transversaler Fluß möglich. Die wenig komprimierte Spektatorenmaterie, die vermehrt aus schwereren Fragmenten besteht, zeigt negativen Fluß bei großen Rapiditäten, wohingegen dieKompressionszone in Form von einzelnen Nukleonen positiven transversalen Fluß zeigt. Aufgrund der großen Sensitivität gegenüber den Systemparametern und der Zustandsgleichung lohnt es sich, diesen Effekt experimentell zu untersuchen. Beim Studium azimuthaler Verteilungen wurde deutlich, daß auch in den Balance-Punkten noch kollektiver Fluß in Form von azimuthaler Asymmetrie vorliegt. Im Gegensatz zur bekannten hochenergetischen Bevorzugung der Emissionswinkel senkrecht zur Reaktionsebene für Teilchen aus der Wechselwirkungszone wurde hier die bei kleineren Energien preferentielle Emission in die Reaktionsebene aufgezeigt. Diese nimmt mit der Teilchenmasse und dem Stoßparameter zu. Das systematische Studium der Anregungsfunktion dieser azimuthalen Asymmetrie könnte durch die Übergangsenergien, die durch den Wechsel von der preferentiellen Emission in die Reaktionsebene zu der Bevorzugung der Winkel senkrecht zur Reaktionsebene definiert sind, wertvolle, ergänzende Information zu den Balance-Energien liefern.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sven SoffORCiD
URN:urn:nbn:de:hebis:30-6655
Advisor:Horst Stöcker
Document Type:diplomthesis
Language:German
Date of Publication (online):2005/04/12
Year of first Publication:1995
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2005/04/12
HeBIS-PPN:128746955
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht