Eine makroskopische Klimadynamik und ihre diagnostische sowie prognostische Anwendung auf globale Temperaturvariationen

  • Basierend auf der Feststellung, daß selbst die aufwendigsten zur Zeit verfügbaren Klimamodelle (das sind gekoppelte atmosphärisch-ozeanische Zirkulationsmodelle, AOGCM) nicht in der Lage sind, alle bekannten externen Antriebe und internen Wechselwirkungen des Klimas simultan zu erfassen, werden zunächst die Stärken und Schwächen von rein statistischen Ansätzen zur Analyse von Zusammenhängen zwischen beobachteten Zeitreihen diskutiert. Speziell geht es dabei um die Frage, welche natürlichen und anthropogenen Antriebe in welchem Ausmaß zu den beobachteten Variationen der globalen Mitteltemperatur beigetragen haben (Signaltrennung). Es wird gezeigt, daß ein einfacher physikalisch motivierter Ansatz, der einige Schwächen der rein statistischen Ansätze vermeidet, nicht zum Ziel der Signaltrennung führt. Damit ergibt sich die Notwendigkeit, sich eingehender mit den Eigenschaften des globalen Klimasystems zu beschäftigen. So stellt sich die Frage, unter welchen Bedingungen das Klima überhaupt vorhersagbar ist. Aufgrund dieser Überlegungen erscheint es möglich, das globale Klima, repräsentiert durch die globale Mitteltemperatur, mit Hilfe von Energie-Bilanz-Modellen (EBM) zu beschreiben. Es folgt, daß ein 3-Boxen-EBM (Atmosphäre, ozeanische Mischungsschicht und tieferer Ozean) ausreicht, um den Verlauf der globalen bodennahen Mitteltemperatur zu untersuchen. Um das Problem einer Überanpassung zu vermeiden, wird das Modell am hemisphärisch gemittelten Jahresgang von Temperatur und Ausstrahlung, am Verlauf der bodennahen Mitteltemperatur eines Zirkulationsmodells im Einschaltexperiment, sowie im Vergleich zu paläoklimatologischen Daten kalibriert. Es wird eine Lösung dieses Modells abgeleitet, die als rekursiver Filter zur Zeitreihenanalyse verwendet werden kann. Um auch den hemisphärischen Temperaturverlauf untersuchen zu können, wird das 3-Boxen-Modell auf fünf Boxen erweitert (hemisphärische Atmosphären- und ozeanische Mischungsschicht-Boxen sowie ein globaler tieferer Ozean). Auch dieses Modell wird im wesentlichen an den Jahresgängen der Temperatur kalibriert und eine Lösung in Form eines rekursiven Filters abgeleitet. Von besonderer Bedeutung ist dabei, daß die so abgeleiteten Filter weder in ihrer Struktur, noch in ihren Parameterwerten aus einer Anpassung an die zu untersuchenden Zeitreihen stammen. Bevor die beobachteten Temperaturzeitreihen für den Zeitraum von 1866 bis 1994 mit den zwei Modellversionen rekonstruiert werden können, müssen die berücksichtigten externen Antriebe in Form von Heizratenanomalien vorliegen. Es werden zwei natürliche (solare Schwankungen und explosive Vulkanaktivität) und zwei anthropogene externe Antriebe (Treibhausgas- und Schwefeldioxidemissionen, die zur Bildung von anthropogenem troposphärischen Sulfat führen) untersucht. Die Heizratenanomalien der solaren Schwankungen folgen aus Satellitenmessungen und einer Extrapolation mit Hilfe von Sonnenflecken-Relativzahlen. Für den Einfluß des Vulkanismus wurde eine Parametrisierung erstellt, die sowohl die Ausbreitung von stratosphärischem Vulkanaerosol als auch dessen Einfluß auf den Strahlungshaushalt berücksichtigt. Zur Beschreibung des anthropogenen Zusatztreibhauseffekts wurde auf Ergebnisse von Strahlungs-Konvektions-Modellen (RCM) zurückgegriffen. Der Einfluß des anthropogenen troposphärischen Sulfats wurde entsprechend dem ungenauen Kenntnisstand nur grob parametrisiert. Mit den Modellen lassen sich zu jedem Antrieb Zeitreihen der globalen und hemisphärischen Temperaturanomalien berechnen. Die beobachteten ENSO-korrigierten Temperaturanomalien lassen sich (außer im Fall der Nordhemisphäre) sehr gut als Summe dieser Antriebe und Zufallsrauschen ausdrücken. Dabei hat das Zufallsrauschen mit dem Modell verträgliche Eigenschaften und kann somit als internes Klimarauschen interpretiert werden. Es ist demnach möglich, zusätzlich zur Signaltrennung zu testen, ob sich die Temperaturzeitreihen ohne die anthropogenen Antriebe signifikant anders verhalten hätten. Der Unterschied ist auf der Südhemisphäre und global mit 99 % signifikant, auf der Nordhemisphäre mit 95 %. Das bedeutet, daß der Mensch das Klima mit hoher Wahrscheinlichkeit beeinflußt. Auf der Basis von Szenarien wird außerdem der anthropogene Einfluß auf das Klima der nächsten Dekaden prognostiziert. In diesem Zusammenhang stellt sich die Frage, wie groß die Zeitverzögerung zwischen anthropogenen Antrieben und deren Wirkung auf das Klima ist. Auch dieser Frage wird nachgegangen und es ergibt sich, daß diese Verzögerung zur Zeit bei etwa zehn Jahren liegt. Da die Verzögerungszeit aber keine Eigenschaft des Klimasystems ist (wie etwa eine Trägheitsoder Mischungszeit), sondern von der zeitlichen Struktur des Antriebs abhängt, ist sie keine Konstante und kann somit nur eingeschränkt für Prognosen verwendet werden. Andererseits erlaubt die Kenntnis der Verzögerungszeit eine statistische Verifikation mit Hilfe eines multiplen Regressionsmodells. Diese unterstützt die Prognosen des EBM.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jürgen Grieser
URN:urn:nbn:de:hebis:30-24701
Referee:Christian-Dietrich SchönwieseGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/03/10
Year of first Publication:1996
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:1997/02/07
Release Date:2006/03/10
Source:Berichte des Zentrums für Umweltforschung ; 26
HeBIS-PPN:172396085
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoDeutsches Urheberrecht