Strukturelle Dynamik von Peptidyl-Carrier-Domänen in nicht-ribosomalen Peptid-Synthetasen

  • Eine große Zahl natürlicher sekundärer Metabolite sind kleine und strukturell oft sehr verschiedene Polypeptide und Polyketide. Diese bioaktiven Substanzen haben im allgemeinen ein breit aufgestelltes therapeutisches Potential und werden von verschiedenen bakteriellen Stämmen und Pilzen biosynthetisiert. Sie sind sowohl biologisch, als auch therapeutisch wichtig als Cytostatika, Immunsuppressiva und Antibiotika mit einem sehr großen antibakteriellen und antiviralen Potential. Diese oft äußerst komplexen Polypeptide und Polyketide werden von modular aufgebauten Megaenzymen in mehrstufigen Mechanismen synthetisiert. Für die Synthese dieser Peptide sind sehr große Proteincluster verantwortlich, die meistens aus einer begrenzten Anzahl sehr großer, Multidomänen umfassenden, Superenzyme aufgebaut werden. Diese Proteincluster mit einem Molekulargewicht bis in den Bereich von MegaDalton werden als nicht-ribosomale Peptidsynthetasen (NRPS) und Polyketidsynthetasen (PKS) bezeichnet. Die NRPS Systeme zeichnen sich dadurch aus, daß für die biosynthetisierten Polypeptide keine Information in Form von Nukleinsäuren wie DNA oder RNA kodiert (Walsh, C.T., 2004; Sieber & Marahiel, 2005). Für die Synthese der Polypeptide ist eine Aktivierung der einzelnen Bausteine, der Aminosäuren, durch Amino-acyl-adenylierung notwendig. Im Anschluß an die Aktivierung, wird die aktivierte Aminosäure über einen Thioester gebunden weitertransportiert. Die Thioesterbildung erfolgt an Cysteaminthiolgruppen intrinsischer 4’-Phosphopantethein-kofaktoren. Eine Modul einer NRPS stellt eine geschlossene Einheit zum Einbau einer Aminosäure mit einer hohen Spezifität für das Substrat und die biosynthetische Reaktion dar. Diese Module sind aus Domänen aufgebaut, die definierte Funktionen haben und mittels flexibler Linker miteinander verbunden sind. Die Domänen werden nach ihrer Funktion unterschieden. Die Acyl-adenylierung oder Aktivierung eines Substrates, beispielsweise einer Aminosäure, erfolgt durch die A-Domänen. Die Peptidyl- oder Acyltransportfunktion der aktivierten Substrate wird durch Thioester-domänen (T-Domäne), auch PCP (peptidyl carrier domain) genannt, bewältigt. Die Biosynthese der Kopplungsreaktion, beispielsweise die Ausbildung der Peptidbindung in NRPS Systemen, erfolgt an den Kondensations-Domänen (C-Domäne). Für die Substratspezifität eines Synthesemoduls sind die A-Domänen verantwortlich, welche die Aktivierung eines Substrat durch ATP-Hydrolyse ermöglichen. In NRPS Systemen sind auch Zyklisierungsreaktionen, durchgeführt von Cyclase-Domänen (Cy-Domänen), L/D-Epimerase-funktionen (E-Domänen) und N-Methylierungen (M-Domänen) beschrieben. So wird in Tyrocidin A an zwei Positionen spezifisch Phenylalanin in die D-Form epimerisiert und anschließend in der Peptidbiosynthese verwendet. Die Interaktion und Erkennung zwischen den multi-modularen Superenzymen, zum korrekten Aufbau der kompletten Synthetase, wurden in letzter Zeit Kommunikations-Domänen (COM-Domänen) beschrieben. Wie die aufgebaute Synthetase die korrekte Sequenz der biosynthetischen Reaktionsschritte sicherstellt ist nicht bekannt. Die enorme Diversität biosynthetischer Reaktionen in NRPS Systemen und die hohe Substratvielfalt in den verschiedensten Synthetasen unterschiedlicher Stämme eröffnet ein weites Feld für mögliche Neukombinationen von Modulen und Modifikationen von Produkten, um neue bioaktive Polypeptide mit antibiotischen Eigenschaften durch die Gestaltung neuer biosynthetischer Reaktionswege zu erhalten. Die Biosyntheseprodukte der NRPS und PKS Systeme lassen sich Gruppen kategorisieren wie Peptidantibiotika, beispielsweise beta-Lactame und makrozyklischer Polypeptide. Weitere Gruppen sind die makrozyklischen Lactone, beispielsweise Polyene und Makrolide, aromatische Verbindungen, wie Chloramphenicol, und Chinone (Tetracyclin). Die näher diskutierten Beispiele sind die antibakteriellen Polypeptide Surfactin und Tyrocidin A. Surfactin ist ein antibakteriell wirkendes makrozyklisches Lipoheptapeptid, welches von Bacillus subtilis synthetisiert wird und ein enormes antivirales Potential besitzt. Tyrocidin A ist ein antibakteriell wirkendes makrozyklisches Decapeptid und wird von Bacillus brevis und Brevisbacillus parabrevis synthetisiert. Zusätzlich werden viele bakterielle Toxine ebenfalls durch solche Systeme multi-modularer Synthetasen erzeugt. Ein Beispiel ist das Polyketid Vibriobactin, das Toxin des humanpathogenen Bakterium Vibrio cholerae. Ein zunehmendes Problem der wachsenden Weltbevölkerung moderner Gesellschaften und in den Entwicklungsländern ist die wachsende Zahl multiresistenter Bakterienstämme. Die starke Progression in der Entwicklung von Resistenzen gegen Antibiotika ist auch Gegenstand des aktuellen WHO-Reports (2006). Alarmierend ist die beschleunigte Resistenzentwicklung gegen die sogenannten Reserveantibiotika Vancomycin und Ceftazidim. Ein umfangreicheres Verständnis der Interaktion zwischen Domänen in einem Modul und zwischen Modulen eines NRPS Systems ist Grundlage für die Neukombination unterschiedlicher Module zur erfolgreichen Gestaltung neuer Biosynthesen. Da die meisten dieser Biosynthesen oder die Synthese alternativer Substanzen nicht in der Organischen Chemie zu realisieren sind oder die Produkte zu teuer wären, um diese in großen Mengen zu erzeugen, muß das Ziel sein die NRPS und PKS Systeme in ihrem modularen Aufbau und ihre Interaktion zu verstehen, um alternative Antibiotika biosynthetisch herzustellen. Peptidyl Carrier Proteine (PCPs) sind kleine zentrale Transport-Domänen, integriert in den Modulen nicht-ribosomaler Peptidsynthetasen (NRPSs). PCPs tragen kovalent über eine Phosphoesterbindung einen aus dem Protein herausragenden 4’-phosphopantetheinyl (4’-PP) Kofaktor. Der 4’-PP Kofaktor ist an der Seitenkette eines hochkonservierten Serins gebunden, welche ein zentraler Bestandteil der Phosphopantethein-Erkennungs-Sequenz ist. Die Erkennungssequenz ist homolog in vielen Proteinen mit ähnlicher Funktion, inklusive Acyl Carrier Proteinen (ACPs) der Fettsäuresynthetasen (FAS) und der Polyketidsynthetasen (PKS). Die Thiolgruppe des 4’-PP Kofaktors dient zum aktiven Transport der Substrate und der Intermediate der NRPS Systeme. Die generelle Organisation und die Kontrolle der exakt aufeinander folgenden Reaktionsschritte in der Peptidsynthetase, ist die entscheidende Frage für die Funktion des Proteinclusters (assembly line mechanism). In Modulen der NRPS Systeme folgen die PCP-Domänen C-terminal auf die Adenylierungsdomänen (A-Domäne). Die Aufgabe der A-Domänen ist die Selektion and die Aktivierung einer spezifischen Aminosäure für die „assembly line“. Die eigentliche Bildung der Peptidbindung erfolgt an der Kondensations-Domäne (C-Domäne). Der Transfer der Peptidintermediate und der aktivierten Aminosäuren zwischen A-Domänen und C-Domänen ist Aufgabe der PCPs. Um diese Funktion erfüllen zu können, ist eine große Bewegung in PCPs, bzw. des 4’-PP Kofaktors notwendig, welche als „swinging arm model“ (Weber et al., 2001) beschrieben wurde. Die PCPs koordinieren damit die Peptidbiosynthese während sie mit diversen Domänen der Synthetasen spezifisch wechselwirken müssen. Die molekularen Mechanismen des Transportes wurden bisher allerdings nicht untersucht. Eine Dynamik der Transport-Domänen wurde bereits postuliert (Kim & Prestegard, 1989; Andrec et al., 1995), konnte bisher aber nicht gezeigt werden (Weber et al., 2001). Interessanterweise zeigt sowohl apo-PCP (ohne den kovalent gebundenen 4’-PP Kofaktor) also auch holo-PCP langsamen chemischen Austausch, der als jeweils zwei stabile Konformationen beschrieben werden konnte. Diese jeweils zwei stabilen Zustände, welche sich im Austausch befinden, wurden als A und A*, für apo-PCP, und entsprechend H und H* für holo-PCP bezeichnet. Während der A- und der H-Zustand sich sowohl voneinander als auch von den entsprechenden A* und H*-Zuständen unterscheiden und spezifisch für die apo- und die holo-Form von PCP sind, ist die kalkulierte Struktur vom A*-Zustand größten Teils identisch mit der des H*-Zustandes. Die erhaltenen NMR-Strukturen des A-Zustandes, des H-Zustandes und des gemeinsamen A/H-Zustandes beschreiben in ihrer Gesamtheit ein neues Modell für ein allosterie-kontrolliertes System dualer konformationeller Zwei-Zustands-Dynamik. Zu dem beobachteten konformationellen Austausch der PCP-Domäne, konnte die Bewegung des 4’-PP Kofaktors koordiniert werden. Die Bewegung des 4’-PP Kofaktors in Verbindung mit dem konformationellen Austausch der PCP-Domäne charakterisiert die Interaktion mit katalytischen Domänen eines NRPS Moduls. Des weiteren konnte mit Hilfe des Modells die Wechselwirkung mit externen Interaktionspartnern, wie der Thioesterase II und der 4’-PP Transferase, untersucht werden. Die externe Thioesterase II der Surfactin-Synthetase (SrfTEII) von Bacillus subtilis ist ein separat expremiertes 28 KDa Protein. Sie gehört zur Familie der alpha/beta-Hydrolasen und ist verantwortlich für die Regenerierung falsch beladener 4’- PP Kofaktoren der Peptidyl Carrier Domänen. Die SrfTEII wurde mittels Lösungs-NMR untersucht, die Resonanzen wurden zugeordnet, erste strukturelle Modelle konnte berechnet werden und das Interaktionsverhalten mit verschiedenen modifizierten Kofaktoren und PCPs wurde analysiert. Die Spezifität der Substraterkennung durch die SrfTEII kann beschrieben werden. Interessanterweise zeigt auch die SrfTEII Doppelpeaks für einzelne Aminosäuren, diese können als Indikator für eine spezifische Substraterkennung durch das Enzym verwendet werden und helfen den funktionellen Unterschied zwischen der SrfTEI-Domäne und SrfTEII zu verstehen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexander Koglin
URN:urn:nbn:de:hebis:30-38610
Place of publication:Frankfurt am Main
Referee:Volker DötschORCiDGND, Mohamed A. Marahiel
Advisor:Volker Dötsch
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2007/03/06
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2006/07/11
Release Date:2007/03/06
Page Number:129
First Page:1
Last Page:118
HeBIS-PPN:184931592
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht