Role of enhanced stem cell capacities in leukemogenesis

  • Unlimited self-renewal is an absolute prerequisite for any malignancy, and is the ultimate arbiter of the continuous growth and metastasis of tumors. It has been suggested that the self-renewal properties of a tumor are exclusively contained within a small population, i.e., the so-called cancer stem cells. Enhanced self-renewal potential plays a pivotal role in the development of leukemia. My data have shown that APL associated translocation products PML/RARalpha and PLZF/RARalpha increased the replating efficiency of mouse lin-/Sca1+ hematopoietic stem cells (HSCs). This effect is partly mediated by induction of gamma–catenin which is an important mediator of the Wnt signaling pathway and has been shown to be up regulated by the AML associated translocation products(AATPs). Suppression of gamma–catenin by siRNA can abrogate the increased replating efficiency induced by AATPs. Transduction of gamma–catenin in lin-/Sca1+ HSCs led to increased replating efficiency and the expression of stem cell markers Sca1 and c-kit. Additionally it induced accelerated cell cycle progression of mouse bone marrow HSCs. Transduction/transplantation mouse models have shown that ectopic expression of gamma–catenin in HSCs led to acute myeloid leukemia without maturation. These data suggest important roles of Wnt signaling pathway in the leukemogenesis induced by PML/RARalpha, PLZF/RARalpha and AML1/ETO. In contrast to AATPs, CML and Ph+-ALL associated translocation products p185(BCR-ABL) and p210(BCR-ABL) did not affect the self-renewal potential of hematopoietic stem/progenitor cells. However my studies indicated that their reciprocal translocation products p40(ABL/BCR) and p96(ABL/BCR) actually increased the replating efficiency of hematopoietic stem/progenitor cells. The effect is stronger when induced by p96(ABL/BCR) than by p40(ABL/BCR). It is very intriguing that p96(ABL/BCR) can activate Wnt signaling and up regulate the expression of HoxB4. Transduction/transplantation mouse model has shown that p40(ABL/BCR) and p96(ABL/BCR) both have their own leukemogenic potential. Given the fact that leukemic stem cells maintain the growth of tumor and are the origin of relapse, the cure of leukemia is dependent on the eradication of the leukemic stem cell and abrogation of aberrantly regulated self-renewal capability. Both t-RA and As2O3 have been shown to induce complete remission in APL patients with PML/RARalpha translocation product. However, t-RA as a single agent achieves completeremission (CR) but not complete molecular remissions (CMR). Therefore, virtually all patients will experience a relapse within a few months. In contrast to t-RA, As2O3 as a single agent is able to induce CR as well as CMR followed by long-term relapse-free survival in about 50% of APL patients even if relapsed after treatment with t-RA-containing chemotherapy regimens. Nothing is known about the mechanisms leading to the complete different clinical outcomes by the two compounds although both have been shown to induce differentiation of blast cells, proliferation arrest, induction of apoptosis and degradation of PML/RARalpha. We investigated the effect of t-RA and arsenic on PML/RARalpha-expressing cell population with stem cell capacity derived from the APL cell line NB4 as well as Sca1+/lin- murine bone marrow cells. We found that t-RA did not reduce the replating efficiency in PML/RARalpha- and PLZF/RARalpha-infected Sca1+/lincells whereas it selected small compact colonies representing very early progenitor cells. T-RA was unable to reduce the capacity to form colony forming units-spleen (CFU-S) of Sca1+/lin-cells expressing PML/RARalpha, additionally t-RA did not impair the capability of engraftment of NB4 cells in NOD/SCID mouse. On the contrary to t-RA, As2O3 abolished the aberrant self-renewal potential of Sca1+/lin- cells expressing PML/RARalpha. As2O3 not only abolished the replating efficiency of PML/RARalpha positive cells but also completely abrogated the ability of PML/RARalpha-positive HSC to produce CFU-S in vivo. On the contrary to As2O3, t-RA increased the absolute cell number and the percentage of cells in the side population with respect to the whole cell population in NB4 cells. Taken together these data suggest that arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha positive leukemic stem cells. My data prove for the first time that there is a direct relationship between the capacity of compounds to effectively target the LSC and their capacity to eradicate the leukemia, and, thereby, to induce complete molecular remission and long-term relapse-free survival. Thus, in order to increase the curative potential of leukemia therapies, future studies need to include the effect of given compounds on the stem cell compartment to determine their ability to eradicate the LSC.

Download full text files

  • xiaomin_Zheng_thesis_2007.pdf
    eng

    Zugriffsbeschränkung: Bestandssicherung, Zugriff nur im internen UB-Netz

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Xiaomin Zheng
URN:urn:nbn:de:hebis:30-47017
Place of publication:Frankfurt am Main
Referee:Rolf MarschalekORCiDGND, Dieter HoelzerGND
Advisor:Dieter Hoelzer
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2007/08/07
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2007/08/07
Page Number:165
First Page:1
Last Page:157
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:321557883
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG