Higher-Order-Mode Dämpfer als Strahllagemonitore

  • Im Rahmen dieser Arbeit wurde ein Strahllagemonitor entwickelt, der nur aufgrund der Signale aus den HOM-Dämpfern einer Linearbeschleunigerstruktur die Strahllage mit hoher Genauigkeit bestimmen kann. Ein solcher Monitor hat gegenüber anderen Konzepten einige einzigartige Vorteile. Der HOM-Dämpfer-Strahllagemonitor benötigt keine zusätzlichen Einbauten im Strahlrohr oder der Beschleunigerstruktur. Daher wird keine zusätzliche Länge benötigt. Auch wird eine zusätzliche Emittanzerhöhung durch zusätzliche Impedanzen der Einbauten vermieden. Beide Punkte sind wichtig für den Betrieb eines linearen Kolliders. Ein zweiter Vorteil ist die Messung der Strahllage bezüglich der elektrischen Achse der verwendeten Dipolmode. Wenn als Dipolmode die höhere Mode mit dem störendsten Einfluß auf den Strahl verwendet wird, verfährt die Positionsregelung der Struktur diese automatisch auf die Position, an der der Einfluß dieser Mode minimal ist. Da die anderen Dipolmoden ähnliche Feldgeometrien haben, ist anzunehmen, das ihr Einfluß damit auch weitestgehend minimiert wird. Zur eindeutigen Bestimmung der Strahlposition in der Ebene wurde ein Verfahren entwickelt, daß die Amplituden und die Startphasendifferenz zwischen einer Dipolmode und einer höheren Monopolmode ausnutzt. Durch passende Wahl der Hohlleitergeometrie kann eine monopolartigen Mode in den Dämpferzellen etabliert werden, die das nötige Monopolsignal liefert und in der Frequenz mit der Dipolmode übereinstimmt. Diese Mode vereinfacht erheblich die entwickelte Signalverarbeitungsschaltung. Die Shuntimpedanz dieser Mode wird durch die Geometrie der Hohlleiter bestimmt und kann so eingestellt werden, daß sie für den Betrieb des Strahllagemonitors ausreicht, aber den Strahl noch nicht nennenswert beeinflußt. Durch die Verwendung einer strahlinduzierten Monopolmode als Phasenreferenz ist der Monitor unabhängig von externen Referenzsignalen und funktioniert ohne eingeschaltete Beschleunigungshochfrequenz oder bei falscher Phasenlage des Strahls. Dies ermöglicht es, die Beschleunigerstrukturen auch dann genau zu justieren, wenn der restlichte Beschleuniger noch nicht richtig eingestellt ist oder wenn zu Wartungszwecken einzelne Sektionen während des Betriebs nicht mit Hochfrequenz versorgt werden. Um die Eignung des vorhandenen SBLC-HOM-Dämpfers als Strahllagemonitor zu überprüfen wurden dreidimensionale numerische Feldberechnungen im Frequenz- und Zeitbereich und Messungen an der Dämpferzelle durchgeführt. Für die Messungen ohne Strahl wurde ein Strahlsimulator konstruiert und aufgebaut, der computergesteuerte Messungen mit variablen Ablagen des simulierten Strahls mit einer Auflösung von 1,23 μm erlaubt. Da die vollständige 6 m lange, 180-zellige Beschleunigerstruktur nicht für Messungen zur Verfügung stand und sich auch mit den verfügbaren Computern nicht dreidimensional simulieren ließ, wurde ein eindimensionales ersatzkreisbasiertes Modell des Vielzellers untersucht. Das Ersatzbild aus 879 konzentrierten Bauelementen berücksichtigt die Verstimmung von Zelle zu Zelle, die Zellenverluste, die Dämpferverluste und die Strahlanregung in Abhängigkeit von der Ablage. An dem Ersatzkreis lassen sich die gefangenen Moden und die Wirkung der Dämpfer beobachten. Es liefert bei der Simulation im Zeitbereich als Ergebnis Signale, die verwendet wurden, um die Funktion der Signalverarbeitungsschaltung an der vollständigen Beschleunigerstruktur zu untersuchen. Das eindimensionale Modell hat jedoch auch einige Einschränkungen. Es berücksichtigt nicht die Änderung der Randbedingungen in den Einzelzellen in Abhängigkeit vom Phasenvorschub. Auch beschränkt sich die Simulation auf einen kleinen Teil des durch den Strahl angeregten Frequenzbereiches. Es ist nicht auszuschließen, daß andere Frequenzen die Signalverarbeitungsschalung negativ beeinflussen. Ebenfalls unberücksichtigt bleibt der Einfluß der von Sendeklystron eingespeisten Hochfrequenzleistung. Um diese Einflüsse zu untersuchen wäre es erforderlich, Messungen am realen 180-Zeller mit Strahl und Klystron durchführen zu können. Die vorgenommenen Messungen am Einzeller zeigen, daß das Meßprinzip funktioniert, der vorhandene HOM-Dämpfer als Strahllagemonitor verwendbar ist und die entwickelte Signalverarbeitungsschaltung geeignet ist genaue Positionsinformationen zu liefern. Abgesehen von den ober angesprochenen Einschränkungen bestätigen die Simulationen des 180-Zellers die Übertragbarkeit der Ergebnisse auf Vielzeller. Die Messungen und Simulationen lassen eine Auflösung des fertigen Strahllagemonitors am 180-Zeller in der Größenordnung 1–10 μm und eine relative Genauigkeit kleiner 6,2 % erwarten. Es hat sich gezeigt, daß zur Erzielung hohe Genauigkeit zwei Komponenten des Strahllagemonitors besondere Aufmerksamkeit zu schenken ist. Zum einen muß der HOM-Dämpfer mit den paarweisen Auskoppelstellen präzise, mit guter Symmetrie gefertigt sein. Zum anderen hat der 180°-Hybrid am Eingang der Signalverarbeitungsschaltung großen Einfluß auf die erzielbare Genauigkeit. Beide Komponenten sind wichtig, um die monopol- und dipolartigen Komponenten aus dem ausgekoppelten Signalgemisch sauber voneinander trennen zu können. Wie die Messungen zeigten, ist ein schmalbandiger, auf die verwendete Meßfrequenz spezialisierter, selbst gefertigter Ringhybrid für diese Aufgabe erheblich besser geeignet als ein kommerziell erhältlicher Breitbandhybrid. Bei dem Ringhybrid gibt es jedoch auch noch Verbesserungsmöglichkeiten. Der Ringhybrid wurde präzise gefertigt. Er hat jedoch keine Abgleichmöglichkeit. Eine Korrekturmöglichkeit der Amplitude und Phase an den Eingängen könnte die Auflösung und Genauigkeit noch etwas steigern. Wenn bei der Simulation ein idealer 180°-Hybrid angenommen wird verschwindet ein Großteil des Fehlers. Der nächste Schritt bei der Weiterentwicklung der Signalverarbeitung könnte darin bestehen, die zur Zeit noch getrennt aufgebauten Hochfrequenzkomponenten auf einer gemeinsamen Platine zu integrieren. Zusammen mit dem Mikroprozessorsystem auf einer zweiten Platine entsteht so ein kompaktes System, daß sich preisgünstig in der für einen linearen Kollider erforderlichen großen Stückzahl fertigen läßt.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Claudius PeschkeGND
URN:urn:nbn:de:hebis:30-52304
Place of publication:Frankfurt am Main
Referee:Horst Klein, Thomas WeisGND
Advisor:Horst Klein
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2008/01/22
Year of first Publication:2006
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2007/12/10
Release Date:2008/01/22
Page Number:144
First Page:1
Last Page:136
HeBIS-PPN:194407276
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht