Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

  • Die ionenstrahlinduzierte Desorption ist eine Beeinträchtigung der Leistungsfähigkeit moderner Hochstrom-Schwerionensynchrotrons. Umgeladene Projektilionen folgen in den Ablenkmagneten nicht der Sollbahn des Strahls und kollidieren mit der Strahlrohrwand. Dies führt zu einer stimulierten Gasabgabe an das Beschleunigervakuum. Der resultierende erhöhte Druck hat eine deutliche Einschränkung der Strahllebensdauer zur Folge. Um die Menge des abgegebenen Gases zu minimieren wurden zahlreiche Experimente durchgeführt, die der Bestimmung der Desorptionsausbeute (desorbierte Gasmoleküle pro auftretendem Ion) unterschiedlicher Materialien unter Bestrahlung mit verschiedenen Ionen dienten. Die vorliegende Arbeit ist ein Beitrag zum Verständnis der physikalischen Prozesse der ionenstrahlinduzierten Desorption. Die Messung der Desorptionsausbeuten mittels der Druckanstiegsmethode wurde erstmals mit Materialanalytiken wie ERDA und RBS kombiniert. Mit diesem einzigartigen experimentellen Aufbau kann das Desorptionsverhalten mit den Oberflächen- und Festkörpereigenschaften der Proben korreliert werden. Anhand der durchgeführten Experimente mit 1,4 MeV/u Xenon-Ionen konnte gezeigt werden, dass die ionenstrahlinduzierte Desorption im Wesentlichen ein Oberflächeneffekt ist. Zerstäubte Verunreinigungen oder abgetragene Oxidschichten von Metallen liefern keinen nennenswerten Beitrag zum desorbierten Gas. Dennoch ist die Desorptionsausbeute stark von den Festkörpereigenschaften der Probe abhängig. Rein metallische Proben desorbieren unter Bestrahlung mit schnellen Schwerionen weniger stark als Isolatoren. Durch die experimentellen Ergebnisse wurde es möglich, Desorptionsausbeuten unter Ionenbestrahlung anhand eines modiffizierten inelastischen Thermal-Spike-Modells vorauszusagen. Die Erweiterung des Modells ist die Kombination des Temperaturprofils mit der thermischen Desorption. Damit kann die ionenstrahlinduzierte Desorption als die Abgabe von Oberflächenadsorbaten, ausgelöst durch eine kurzzeitige Erhöhung der Oberflächentemperatur um den Ioneneinschlag herum, betrachtet werden.
  • The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the first time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play animportant role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spikes temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbats from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI¸s SIS18 in high current beam operation.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Markus Bender
URN:urn:nbn:de:hebis:30-56250
Referee:Reinhard DörnerORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2008/08/14
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2008/02/22
Release Date:2008/08/14
HeBIS-PPN:203080556
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht