Formulierungsentwicklung von nanopartikulären Arzneistoffträgern als Drug Targeting System zur antitumoralen Therapie

  • Schwerpunkt der vorliegenden Arbeit war die Formulierungsentwicklung eines nanopartikulären Arzneistoffträgers für Zytostatika zur Gewinnung einer „Drug Targeting“ Zubereitung. Im Fokus der Arbeit stand dabei die Stabilität der unterschiedlichen Zubereitungen. Die untersuchten Partikel waren dabei auf Basis von humanem Serumalbumin. Mittels einer etablierten Desolvatationsmethode ließen sich reproduzierbar Nanopartikel im Größenbereich von 200 nm herstellen. Zur Partikelgrößenbestimmung bediente man sich sowohl der hotonenkorrelationsspektroskopie (PCS) als auch der Analytischen Ultrazentrifugation (AUZ). Bei der Untersuchung verschiedener HSA-Chargen, stellte sich heraus, dass das Ausgangsmaterial einen Einfluss auf die Partikelgröße besaß. Nichtsdestotrotz waren die Partikelgrößenschwankungen aufgrund von unterschiedlichen HSA-Chargen gering. Durch Einlagerung von Doxorubicin in die Partikelmatrix kam es zu einer wesentlichen Partikelvergrößerung, so dass die resultierten Partikel eine Größe von etwa 400 nm aufwiesen. Die Inkorporation des Arzneistoffs in die Partikelmatrix war reproduzierbar und stabil. Auch der Einsatz von Serumalbumin aus rekombinanter Quelle erwies sich als geeignet um Nanopartikel herstellen zu können. Allerdings waren unbeladene Partikel aus diesem Material wesentlich größer als Nanopartikel, die aus dem Standardmaterial hergestellt wurden. Doxorubicinbeladene Partikel zeigten wiederum eine vergleichbare Größe wie Partikel aus HSA. Allerdings war die Beladung der rHSA-Nanopartikel geringer als die der SA-Nanopartikel. Dies zeigte sich besonders bei der geringeren Quervernetzung von 40%. Als Fazit lässt sich sagen, dass prinzipiell eine Herstellung von sowohl Leerpartikeln als auch Doxorubicin-beladenen Partikeln möglich war. Die Biodegradierbarkeit von Nanopartikeln ist eine wichtige Voraussetzung für einen therapeutischen Einsatz kleinpartikulärer Strukturen, damit diese nicht im Körper kumulieren. Zudem könnte bei nicht abbaubaren Partikeln die Idee der intrazellulären Freigabe des eingebetteten Arzneistoffs aus der Partikelmatrix nicht verwirklicht werden. Vorversuche haben gezeigt, dass sich Nanopartikel auf Basis von HSA mit einer Reihe von Enzymen abbauen lassen. Versuche, Nanopartikel aus rHSA enzymatisch abzubauen, führten zu vergleichbaren Abbaukinetiken wie bei Partikeln aus HSA. Zu den eingesetzten nzymen zählten Proteinase K, Protease, Trypsin, Pankreatin, Pepsin und Cathepsin B, die mit Partikel aus rHSA mit den Quervernetzungen 40, 60, 80 und 100% inkubiert wurden. Alle Abbaukinetiken zeigten dabei, dass die Abbaugeschwindigkeit vom Grad der Quervernetzung abhängig war. 40% quervernetzte Nanopartikel wurden am schnellsten, 100% quervernetzte Partikel am langsamsten enzymatisch degradiert. Die Abbauversuche mit Cathepsin B bei zwei verschiedenen pH-Werten zeigten, dass die Wahl des richtigen pH-Werts entscheidend für einen effektiven Abbau ist, denn nur bei einem pH-Wert von 5,4 wurden die Nanopartikel von Cathepsin B abgebaut. Im Gegensatz dazu, wurden die Nanopartikel bei pH 6,4 kaum degradiert. Des Weiteren wurden Beladungsversuche von HSA-Nanopartikeln mit Cisplatin durchgeführt. Dabei wurden im ersten Schritt Adsorptionsversuche an gelöstes HSA durchgeführt, da viele Arzneistoffe eine hohe Plasmaeiweißbindung besitzen, wenn sie sich im Blutkreislauf des Menschen befinden. Diese Tatsache sollte bei der Herstellung von arzneistoffhaltigen Nanopartikel auf Basis von humanem Serumalbumin ausgenutzt werden. Vor dem eigentlichen Desolvatationsprozess wurden gelöstes HSA und Cisplatin bei unterschiedlichen pH-Werten und für unterschiedliche Zeitintervalle inkubiert, um eine Adsorption des Cisplatins an das Protein zu erreichen. Dadurch soll es bei der anschließenden Desolvatation zu einer effektiveren Inkorporation des Arzneistoffs kommen. Die Ergebnisse haben gezeigt, dass bei sauren pH-Werten die Adsorption schwächer ausfällt als bei einem pH-Wert von 8,0. Zudem war die Adsorption umso ausgeprägter, je länger die Inkubation stattfand. Bei einem pH-Wert von 8,0 führten steigende Konzentrationen an eingesetztem Cisplatin bei konstanter Menge an HSA, zu höheren Konzentrationen an adsorbiertem Arzneistoff. Prozentual gesehen, führten aber zunehmende Mengen an eingesetztem Cisplatin zu geringeren Adsorptionsraten. Als Fazit muss aber festgehalten werden, dass Cisplatin eine geringe Tendenz zur Adsorption an gelöstes HSA zeigte. Die Herstellung von Cisplatin-beladenen HSA-Nanopartikeln zeigte, dass die Desolvatation bei pH 8,0 zu guten Ergebnissen führte. Zum einen wiesen die erhaltenen Nanopartikel gute physikochemische Eigenschaften mit nahezu quantitativen Partikelausbeuten auf, zum anderen besaßen die Partikel eine hohe Beladungseffizienz. Dabei galt, je höher die eingesetzte Menge an Cisplatin war, umso mehr Cisplatin wurde in die Matrix der Partikel eingelagert. Die Dauer der zuvor stattfindenden Adsorption spielte dabei eine eher untergeordnete Rolle im Vergleich zu den Adsorptionsversuchen. Eine Erklärung für diese Beobachtung könnte sein, dass die Zugabe des Desolvatationsmittels Ethanol, in welchem Cisplatin sehr schwer löslich ist, zu einer verstärkten Interaktion zwischen Arzneistoff und Protein führt und diese Komponenten zusammen ausfallen, nahezu unabhängig von der zuvor stattfindenden Adsorptionsphase. Um die Idee einer „Drug Targeting“ Zubereitung umsetzen zu können, wurden mit Hilfe von Polyethylenglykol-Ketten sowohl Leerpartikel als auch arzneistoffbeladene Nanopartikel auf ihrer Oberfläche mit monoklonalen Antikörpern modifiziert. Als Verum wurde dabei Trastuzumab verwendet, als Kontrolle diente ein IgG-Antikörper von Sigma, der kein Target besitzt. Sowohl eine adsorptive Bindung als auch die kovalente Kopplung der Antikörper an die Oberfläche der nanopartikulären Strukturen konnte reproduzierbar durchgeführt werden. Dabei spielte es keine Rolle, ob die Partikel mit Arzneistoff beladen waren oder nicht. Trastuzumab zeigte ein hohes Maß an adsorptiver Bindung an die Oberfläche von HSA-Nanopartikeln, die bei dem Kontollantikörper nicht festgestellt werden konnte. Von allen Partikelpräparationen wurden die Partikelgröße, die Größenverteilung, das Zetapotential und die Partikelausbeute bestimmt. Durch das Aufbringen neuer Oberflächenstrukturen, kam es zu keiner wesentlichen Veränderung der Partikelgröße bzw. der Oberflächenladung. Durch die zahlreichen Umsetzungsschritte, die für eine Oberflächenmodifikation nötig sind, kam es bei Nanopartikeln ohne Arzneistoffbeladung zu einem Verlust an Partikelausbeute. Da die Doxorubicin-beladenen Partikel viel größer waren als Leerpartikel, ließen sie sich einfacher und effektiver abzentrifugieren, was in einem geringeren Partikelausbeuteverlust sichbar wurde. Da die Gefriertrocknung zu den Standardmethoden zählt Zubereitungen eine gute Haltbarkeit zu verleihen, wurden eine Reihe von nanopartikulären Zubereitungen der Lyophilisation unterzogen und im Hinblick auf ihre Langzeitstabilität unter verschiedenen Lagerungsbedingungen getestet. Dabei stellte sich heraus, dass es mittels Gefriertrocknung möglich war aus HSA-Nanopartikelsuspensionen einfach und reproduzierbar Lyophilisate herzustellen. Als geeignete Hilfsstoffe kristallisierten sich dabei die Zucker Sucrose, Trehalose, der Zuckeralkohol Mannitol und Emulgatoren wie Tween® 80 und Pluronic® F68 heraus. Als ungeeignet zeichnete sich der Einsatz von L-Arginin und eines Natriumphosphat-Puffers pH 8,0 ab. Larginin führte schon vor dem Gefriertrocknen zu einer Partikelvergrößerung, die nach der Lyophilisation noch ausgeprägter war. Puffer auf Basis von Natriumsalzen führen zu einem starken pH-Shift während des Gefriertrocknungsprozesses. Dies führte beim Einsatz des Phosphat-Puffers pH 8,0 zu einem starken Partikelwachstum. Gefriertrocknungsprozesse mit unterschiedlichen Geräten haben gezeigt, dass der Zusatz von Sucrose bzw. Trehalose oder Mannitol ab einer Konzentration von 2% (m/V) zu guten physikochemischen Eigenschaften der rekonstituierten Proben führte. Hilfsstoffkombinationen, wie sie in der Literatur beschrieben sind, waren für die Stabilisierung der nanopartikulären Strukturen nicht nötig. Die Langzeitlagerungsstabilitätsdaten der gefriergetrockneten HSA-Nanopartikel über 13 Wochen bei unterschiedlichen Temperatur- und Luftfeuchtigkeitsbedingungen zeigten eine Überlegenheit der Hilfsstoffe Sucrose und Trehalose im Vergleich zu Mannitol. Als geeignete Hilfsstoffkonzentration stellte sich hier ein 3%iger (m/V) Zusatz heraus. Versuchsansätze mit unterschiedlichen Gefriertrocknern und somit unterschiedlichen Prozessen zeigten, dass nicht nur die Auswahl der Hilfsstoffe, sondern auch die Bedingungen des Gefriertrocknungsprozesses Einfluss auf die Lagerungsstabilität hatten. Ein kontrollierter Prozess zeigte sich dabei gegenüber dem schnellen Einfrieren mittels Stickstoff als überlegen. Von Nanopartikelsuspensionen mit den Hilfsstoffen Trehalsoe, Sucrose und Mannitol wurden die Glasübergangstemperaturen bestimmt. Die Ergebnisse deckten sich im Wesentlichen mit den in der Literatur beschriebenen Daten, so dass schlussgefolgert werden kann, dass die HSA-Nanopartikel keinen wesentlichen Einfluß auf die Glasübergangstemperatrur hatten. Zusätzlich wurde die Restfeuchte der Lyophilisate direkt nach der Gefriertrocknung und nach 13 wöchiger Einlagerungszeit bestimmt. Die Proben wiesen direkt nach dem Prozess eine Restfeuchte von ungefähr 3% auf, durch Lagerung der Partikel bei erhöhter Luftfeuchtigkeit kam es zu einem Anstieg des Wassergehalts in den Proben. Mit den Hilfsstoffzusätzen Trehalose, Sucrose und Mannitol ließen sich auch Doxorubicin-beladene HSA-Nanopartikel gefriertrocknen. Dabei kam es nach der Rekonstitution dieser Partikel zu keinem Austreten des eingelagerten Arzneistoffs. Zusätzlich wurden oberflächenmodifizierte Partikel lyophilisiert. Dabei bestand die Modifikation zum einen aus Methoxypolyethylenglykol-Ketten. Zum anderen wurden über NHS-PEG-Mal Crosslinker kovalent monoklonale Antikörper auf die Oberfläche von HSANanopartikeln gebunden. Zusätzlich wurden auch HSA-NP in Suspension einer Untersuchung bezüglich Langzeitlagerungsstabilität unterworfen. Dabei wiesen auch HSA-Nanopartikel in Suspension bei verschiedenen Einlagerungsbedingungen eine hohe Stabilität auf. Partikel, die über einen Zeitraum von 210 Tagen eingelagert wurden, zeigten bei den Temperaturen 4°C, 20°C und 30°C im Hinblick auf Partikelgröße und Polydispersität kaum Veränderungen. Die Lagerung der Nanopartikel bei Minusgraden führte allerdings zu Mikropartikeln. Bei der Untersuchung der Partikelüberstände hinsichtlich herausgelöstem HSA zeigte sich, dass je höher die Lagerungstemperatur und je länger die Einlagerung war, umso mehr HSA löste sich aus der mittels Glutaraldehyd fixierten Matrix heraus. Bei den eingefrorenen Partikeln löste sich über die gesamte Lagerungszeit kein Protein aus den Nanopartikeln heraus. Zellkulturexperimente zeigten, dass im Gegensatz zu Kontrollzubereitungen, Nanopartikel, die an ihrer Oberfläche therapeutisch wirksame Antikörper trugen, spezifisch von Krebszellen aufgenommen wurden und im Zellinneren den eingebetteten Arzneistoff freisetzten. Daraus resultierte eine spezifische Toxizität dieser Zubereitungen gegenüber Tumorzellen. Dies ist ein erster Ansatz, um zeigen zu können, dass durch nanopartikuläre Trägersysteme die unerwünschten Nebenwirkungen der unspezifisch wirkenden Zytostatika reduziert werden können. In weiteren Versuchen, vor allem mit Hilfe von in vivo Versuchen muss gezeigt werden, dass das Partikelsystem stabil genug ist, ausreichend lang im Körper zirkulieren zu können. Nur so ist das Trägersystem in der Lage, sein Zielgewebe zu erreichen. Zudem müssen Tierversuche die in der Literatur beschriebene Anreicherung des Partikelsystems im Tumorgewebe verifizieren. Dies ist nur möglich, wenn die Nanopartikel in der Lage sind, das Gefäßsystem im Bereich des Tumorgewebes zu verlassen und anschließend in die Tumormasse einwandern können. Nur dann können die in den Zellkulturversuchen gezeigten Effekte greifen.

Download full text files

  • Anhorn_Dissertation.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marion Anhorn
URN:urn:nbn:de:hebis:30-62906
Referee:Klaus Langer
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2009/04/30
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/02/04
Release Date:2009/04/30
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung. Die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:416830269
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG