Identifizierung kreuzreaktiver Peptidmimotope der therapeutischen anti-EGFR-Antikörper Cetuximab und Matuzumab

  • Tumoren epithelialen Ursprungs weisen häufig eine vermehrte Expression und/oder Mutationen des epidermalen Wachstumsfaktor-Rezeptors (EGFR) auf. Durch die übermäßig starke bzw. permanente Vermittlung von Überlebens- und Proliferationssignalen an die betroffene Zelle trägt dies direkt zum Voranschreiten der Tumorerkrankung bei. Für eine Reihe von Tumorentitäten ist bekannt, dass eine abnorme Expression von EGFR mit einer schlechteren Prognose für den Krankheitsverlauf und die mittlere Überlebenszeit betroffener Krebspatienten korreliert. Begleitend zur systemischen Chemotherapie solcher Tumoren wird eine gerichtete Therapie zur Eindämmung der EGFR-vermittelten Signaltransduktion durch den Einsatz von Tyrosinkinase-Inhibitoren (TKI) oder EGFR-spezifischer monoklonaler Antikörper (mAb) erzielt. Bei der therapeutischen Anwendung monoklonaler anti-EGFR Antikörper wurden in einigen Fällen lediglich milde Nebenwirkungen wie z.B. Hautausschläge beobachtet, wobei das Auftreten dieser Effekte mit dem Therapieerfolg korrelierte. Eine Reihe von monoklonalen Antikörpern, die gegen ErbB Rezeptor-Tyrosinkinasen gerichtet sind, sind mittlerweile zur Tumortherapie zugelassen, darunter der chimäre anti-EGFR Antikörper Cetuximab (Erbitux®, ImClone/BMS/Merck) zur Behandlung von metastasierenden Kolonkarzinomen sowie Karzinomen des Kopf- und Halsbereichs, der humane anti-EGFR Antikörper Panitumumab (Vectibix®, Amgen) bei metastasierenden Kolonkarzinomen, und der humanisierte anti-ErbB2 Antikörper Trastuzumab (Herceptin®, Genentech/Roche) bei Brustkrebs. Weitere Antikörper befinden sich derzeit in fortgeschrittenen Phasen der klinischen Entwicklung, darunter der humanisierte anti-EGFR Antikörper Matuzumab (Merck/Takeda). Klinische Daten zeigen, dass Patienten mit EGFR positiven Tumoren, die gegenüber etablierter Chemotherapie resistent sind, von der Behandlung mit anti-EGFR Antikörpern profitieren. Durch aktivierte EGF-Rezeptoren induzierte mitogene Signale werden vermindert bzw. blockiert, indem die Antikörper mit hoher Affinität an ErbB Rezeptoren auf der Zelloberfläche binden und die Ligandenbindung bzw. die Dimerisierung verhindern, die zur Bildung aktivierter Rezeptor Dimere nötig ist. Auf diese Weise wird die mitogene Signalübertragung aktivierter ErbB-Rezeptor Dimere verhindert und die Proliferation der Tumorzelle wird verlangsamt oder kommt zum Stillstand. Es gibt Hinweise, dass darüber hinaus sekundäre Effektormechanismen des Immunsystems wie die antikörperabhängige zellvermittelte Zytotoxizität (ADCC) oder die komplementabhängige Zytotoxizität (CDC) gegen Antikörper-markierte Tumorzellen die anti-tumorale Wirksamkeit dieser Antikörper noch verstärken. Die lebensverlängernde Wirkung der Behandlung mit diesen Antikörpern ist ein Beispiel für die erfolgreiche Anwendung einer zielgerichteten Krebstherapie durch passive Immuntherapie. Zu Beginn dieser Arbeit waren die genauen Bindungsstellen der therapeutischen anti-EGFR Antikörper Cetuximab und Matuzumab noch unbekannt. Die Kenntnis der Lage der Epitope auf dem EGFR Molekül könnte wichtige Hinweise zur Aufklärung der Wirkungsmechanismen dieser Antikörper liefern und Ansätze zur weiteren Optimierung dieser Therapeutika aufzeigen. Aus vorangegangenen Experimenten war bekannt, dass Cetuximab und Matuzumab Epitope auf dem EGFR erkennen, die eine intakte Raumstruktur des Rezeptors voraussetzen. Diese Beobachtungen konnten in dieser Arbeit bestätigt werden, ferner konnte die Lage der Epitope auf die EGFR Ektodomäne III/L2 eingegrenzt werden. Da sowohl Cetuximab als auch Matuzumab nicht-lineare, konformationelle Epitope erkennen, wurde eine Variante der Phage Display Methode zur Identifizierung von Peptiden gewählt, die mit den hypervariablen Regionen (CDR) dieser Antikörper interagieren, welche die Bindungsspezifität der Antikörper vermitteln. Ziel dieser Experimente war die Identifizierung von Peptiden, welche die konformationellen Epitope von Cetuximab bzw. Matuzumab in linearer bzw. zyklisch restringierter Form nachbilden. Die Aminosäuresequenzen solcher sogenannter Mimotope könnten zur Identifizierung entsprechender Oberflächenstrukturen am EGFR Molekül herangezogen werden. In der vorliegenden Arbeit wurden aus kommerziell erhältlichen Bibliotheken genetisch modifizierter M13 Bakteriophagen, die randomisierte lineare bzw. zyklische Peptide als N-terminale Fusion am Oberflächenprotein pIII exponieren (M13KE), unter Anwendung der „Delayed Infectivity Panning“ (DIP) Methode Peptide angereichert, die von Cetuximab bzw. Maztuzumab erkannt werden. Zur Anreicherung von M13KE Bakteriophagen mit CDR-spezifischen Fusionspeptiden mittels DIP wurde zunächst ein „single-chain“ Antikörperfragment aus der cDNA von Matuzumab konstruiert und in den bakteriellen Expressionsvektor pIB-Tx kloniert. Mit dem resultierenden Konstrukt pIB-Tx-scFv(E72K) bzw. dem bereits vorhandenen analogen Konstrukt pIB-Tx-scFv(225), welches das „single-chain“ Antikörperfragment von Cetuximab enthält, wurden E. coli HB101 Bakterien transformiert, um die bakterielle Oberflächenexpression dieser Antikörperfragmente zum Einsatz in DIP Experimenten zu erreichen. In alternierenden positiven und negativen Selektionsrunden wurden unter Einsatz dieser scFv-exprimierenden E. coli HB101 Bakterien in Biopanning Experimenten Phagen mit solchen Fusionspeptiden angereichert, die selektiv an die „single-chain“ Antikörperfragmente von Cetuximab bzw. Matuzumab binden. Phagen ELISA Experimente mit M13KE Einzelklonen zeigten, dass aus allen eingesetzten Bibliotheken Phagen mit Fusionspeptiden isoliert werden konnten, die an den jeweiligen parentalen Antikörper des zur Selektion eingesetzten „single-chain“ Antikörperfragmentes binden. Ein Teil der Phagenklone wies eine zumindest partielle Kreuzreaktivität zu dem entsprechenden anderen anti-EGFR Antikörper auf, obwohl sie auf Bindung an diesen nicht selektioniert worden waren. Die Sequenzanalyse der Fusionspeptide lieferte keine gemeinsame Consensus Sequenz, es konnten jedoch kurze, gemeinsame Sequenzmotive identifiziert werden. In MTT-Zytotoxizitätsassays wurden diese Klone als mögliche Kompetitoren der Bindung des gegen EGFR gerichteten Immuntoxins scFv(225)-ETA in MTT-Zytotoxizitätsassays eingesetzt. Ein Teil der selektionierten Fusionspeptide war in der Lage, die Bindung der aus dem „single-chain“ Antikörperfragment von Cetuximab scFv(225) bestehenden Zellbindungsdomäne des Immuntoxins scFv(225)-ETA an EGFR exprimierende Zellen zu kompetieren. Auch für einige Fusionspeptide, die zunächst nur auf Bindung an Matuzumab selektioniert worden waren, wurde dies beobachtet. Peptide, welche die Bindung des Immuntoxins an EGFR kompetieren, weisen in ihren pIII-Fusionspeptiden laut Sequenzanalyse die gemeinsamen Sequenzmotive KTL bzw. YPLG auf. Nach einem Abgleich der Sequenzen der kompetierenden, kreuzreaktiven Peptide mit KTL bzw. YPLG Motiven wurden zwei Peptide ausgewählt und zur Immunisierung von Kaninchen eingesetzt. In MTT-Zytotoxizitätsassays wurde zunächst bestätigt, dass die synthetischen Peptide in der Lage sind, durch Kompetition spezifisch die Bindung des gegen EGFR gerichteten Immuntoxins scFv(225)-ETA und dessen zytotoxische Wirkung auf EGFR exprimierende Zellen zu verhindern. Kaninchenseren und aus diesen affinitätsgereinigte anti-Peptid Antikörper zeigten in ELISA Experimenten konzentrationsabhängige Bindung an die immobilisierten synthetischen Peptide. Die Bindung der anti-EGFR Antikörper Cetuximab und Matuzumab an die synthetischen Peptide konnte ebenfalls bestätigt werden. In einer Reihe von Experimenten wurde untersucht, ob die Immunisierung mit potentiellen Mimotopen der anti-EGFR Antikörper eine endogene humorale Immunantwort gegen den humanen EGFR bewirkt hatte. Die Bindung der affinitätsgereinigten anti-Peptid Antikörper an den Rezeptor auf der Oberfläche EGFR-exprimierender Tumorzellen wurde zunächst in Durchflusszytometrie (FACS) Experimenten analysiert. Für die gereinigten anti-Peptid Antikörper wurde spezifische Bindung an murine Renca-lacZ/EGFR Zellen sowie an humane A431 Vulvakarzinomzellen detektiert, die den humanen EGFR auf der Oberfläche exprimieren. Die Bindung an A431 konnte durch Vorinkubation der Antikörper mit einem Überschuss der entsprechenden synthetischen Peptide vollständig verhindert werden. In einer weiteren Serie von FACS Experimenten konnte gezeigt werden, dass die Bindung der Antikörper Cetuximab und Matuzumab an EGFR durch eine Vorinkubation von Renca-lacZ/EGFR Zellen mit den gereinigten anti-Peptid Antikörpern deutlich reduziert werden konnte. Dies ist ein Beweis für die Fähigkeit der in Immunisierungsexperimenten generierten anti-Peptid Antikörper, die Bindungsstellen von Cetuximab und Matuzumab am EGFR zumindest teilweise zu besetzen. Diese Beobachtungen zeigen, dass durch Immunisierung mit den hier ausgewählten synthetischen Peptiden in Versuchstieren die Bildung von Antikörpern mit ähnlichen Eigenschaften wie Cetuximab bzw. Matuzumab und somit eine endogene Immunantwort gegen den humanen EGFR ausgelöst werden konnte. In Immunfluoreszenz Experimenten wurde die Bindung der anti-Peptid Antikörper an Renca-lacZ/EGFR Zellen erneut überprüft und mittels konfokaler Laser Scanning Mikroskopie (CLSM) visualisiert. In diesen Experimenten wurde für gereinigte anti-Peptid Antikörper (KTL Motiv bzw. YPLG Motiv) Bindung an die Zelloberfläche bzw. membrannahe intrazelluläre Strukturen beobachtet, die der Lokalisierung der Bindungssignale der parallel getesteten anti-EGFR Antikörper Cetuximab, Matuzumab und dem murinen anti-EGFR Antikörper R-1 entsprach. Die Bindung der anti-Peptid Antikörper konnte durch Zugabe eines Überschusses der jeweiligen synthetischen Peptide verhindet werden. In einer weiteren Serie von Immunfluoreszenz Experimenten wurde der humane EGFR auf Renca-lacZ/EGFR Zellen gleichzeitig mit anti-KTL bzw. anti-YPLG Peptid Antikörpern aus Kaninchen sowie dem murinen anti-EGFR Antikörper R-1 detektiert. Durch eine Überlagerung der Signale konnte eindeutig eine Kolokalisation nachgewiesen werden. Dies ist ein Beweis dafür, dass es sich bei der Bindung der anti-Peptid Antikörper an die Oberfläche von Renca-lacZ/EGFR um Bindung an den humanen EGFR handelt. In Lysaten von EGFR exprimierenden Zelllinien konnte mit gereinigten anti-Peptid Antikörpern ein Protein detektiert werden, dessen Größe dem humanen EGFR entspricht. Die durch Stimulation des humanen EGFR mit dem natürlichen Peptidliganden EGF hervorgerufene Autophosphorylierung des Rezeptors in A431 Zellen konnte durch Zugabe von anti-Peptid Antikörpern teilweise inhibiert werden, allerdings nicht in dem gleichen Ausmaß, wie dies für die als Positivkontrollen eingesetzten anti-EGFR Antikörper Cetuximab und Matuzumab beobachtet wurde. In MTT-Zytotoxizitätsassays konnte darüber hinaus eine teilweise Kompetition der Bindung des rekombinanten Toxins TGF!-ETA an EGFR-exprimierende A431 Zellen, und somit eine teilweise Kompetition des natürlichen Peptidliganden TGF! an EGFR durch Vorinkubation mit anti-Peptid Antikörpern nachgewiesen werden. Zur näherungsweisen Quantifizierung der Affinitäten der anti-Peptid Antikörper und der anti-EGFR Antikörper Cetuximab und Matuzumab für die synthetischen Peptide (KTL Motiv und YPLG Motiv) bzw. für die gereinigte extrazelluläre Domäne des humanen EGFR (sEGFR) wurden ELISA Bindungstests durchgeführt. Die aus den Bindungskurven berechneten Affinitätswerte zeigen, dass die anti-Peptid Antikörper an sEGFR im nanomolaren Bereich binden und damit ca. 200-fach niedrigere Affinitäten für den Rezeptor besitzen als die affinitätsoptimierten anti-EGFR Antikörper Cetuximab bzw. Matuzumab. Die Affinitäten der anti- Peptid Antikörper für die synthetischen Peptide liegen ebenfalls im nanomolaren Bereich, während Cetuximab und Matuzumab lediglich mikromolare Affinitäten für die Peptide besitzen. Durch „Epitope Mapping“ in silico vorhergesagte mögliche Oberflächenstrukturen auf EGFR, welche die Peptidmimotope mit KTL bzw. YPLG Motiven nachbilden, sind direkt benachbart zu den mittlerweile publizierten Bindungsstellen von Matuzumab und Cetuximab bzw. EGF in der Ektodomäne III/L2 von EGFR (Li et al., 2005; Schmiedel et al., 2008) und zeigten im Falle des Peptides mit KTL Motiv Übereinstimungen mit Teilen beider Epitope. Möglicherweise ist dieses Peptid in der Lage, alternative Strukturen mit KTL bzw. KTI Motiven an der Oberfläche von EGFR nachzubilden, die Gemeinsamkeiten mit beiden Epitopen von Cetuximab bzw. Matuzumab besitzen und daher von beiden Antikörpern erkannt werden können. Eine endgültige Klärung der Bindung der hier identifizierten Peptide an Cetuximab bzw. Matuzumab bzw. der Bindung der anti-Peptid Antikörper an EGFR könnte in nachfolgenden Untersuchungen mittels Röntgenkristallographie bzw. NMR strukturell aufgeklärt werden – die hierzu nötigen Peptide bzw. Proteine liegen bereits in gereinigter Form vor. Eine Optimierung der hier identifizierten Mimotope zur Steigerung der Affinitäten der induzierten anti-Peptid Antikörper für EGFR könnte zur Entwickung von Vakzinen führen, die eine Alternative zur wiederholten, kostenintensiven passiven Immunisierung von Patienten mit EGFR-exprimierenden Tumoren mit monoklonalen Antikörpern darstellen könnte.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Cord Hartmann
URN:urn:nbn:de:hebis:30-67286
Referee:Bernd LudwigGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/12/01
Year of first Publication:2009
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/05/26
Release Date:2010/12/01
HeBIS-PPN:229213189
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Angeschlossene und kooperierende Institutionen / Georg-Speyer-Haus
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht