Development of a computational method for reaction-driven de novo design of druglike compounds

Entwicklung einer computergestützten Methode zum reaktionsbasierten De-Novo-Design wirkstoffartiger Verbindungen

  • A new method for computer-based de novo design of drug candidate structures is proposed. DOGS (Design of Genuine Structures) features a ligand-based strategy to suggest new molecular structures. The quality of designed compounds is assessed by a graph kernel method measuring the distance of designed molecules to a known reference ligand. Two graph representations of molecules (molecular graph and reduced graph) are implemented to feature different levels of abstraction from the molecular structure. A fully deterministic construction procedure explicitly designed to facilitate synthesizability of proposed structures is realized: DOGS uses readily available synthesis building blocks and established reaction schemes to assemble new molecules. This approach enables the software to propose not only the final compounds, but also to give suggestions for synthesis routes to generate them at the bench. The set of synthesis schemes comprises about 83 chemical reactions. Special focus was put on ring closure reactions forming drug-like substructures. The library of building blocks consists of about 25,000 readily available synthesis building blocks. DOGS builds up new structures in a stepwise process. Each virtual synthesis step adds a fragment to the growing molecule until a stop criterion (upper threshold for molecular mass or number of synthesis steps) is fulfilled. In a theoretical evaluation, a set of ~1,800 molecules proposed by DOGS is analyzed for critical properties of de novo designed compounds. The software is able to suggest drug-like molecules (79% violate less than two of Lipinski’s ‘rule of five’). In addition, a trained classifier for drug-likeness assigns a score >0.8 to 51% of the designed molecules (with 1.0 being the top score). In addition, most of the DOGS molecules are deemed to be synthesizable by a retro-synthesis descriptor (77% of molecules score in the top 10% of the decriptor’s value range). Calculated logP(o/w) values of constructed molecules resemble a unimodal distribution centred close to the mean of logP(o/w) values calculated for the reference compounds. A structural analysis of selected designs reveals that DOGS is capable of constructing molecules reflecting the overall topological arrangement of pharmacophoric features found in the reference ligands. At the same time, the DOGS designs represent innovative compounds being structurally distinct from the references. Synthesis routes for these examples are short and seem feasible in most cases. Some reaction steps might need modification by using protecting groups to avoid unwanted side reactions. Plausible bioisosters for known privileged fragments addressing the S1 pocket of trypsin were proposed by DOGS in a case study. Three of them can be found in known trypsin inhibitors as S1-adressing side chains. The software was also tested in two prospective case studies to design bioactive compounds. DOGS was applied to design ligands for human gamma-secretase and human histamine receptor subtype 4 (hH4R). Two selected designs for gamma-secretase were readily synthesizable as suggested by the software in one-step reactions. Both compounds represent inverse modulators of the target molecule. In a second case study, a ligand candidate selected for hH4R was synthesized exactly following the three-step synthesis plan suggested by DOGS. This compound showed low activity on the target structure. The concept of DOGS is able to deliver synthesizable and bioactive compounds. Suggested synthesis plans of selected compounds were readily pursuable. DOGS can therefore serve as a valuable idea generator for the design of new pharmacological active compounds.
  • Im Rahmen der vorliegenden Arbeit wird eine neue Methode zum computergestützten de novo Design von wirkstoffartigen Molekülen vorgestellt. Ziel ist es, automatisiert und zielgerichtet neuartige Moleküle mit biologischer Aktivität zu entwerfen. Das entwickelte Programm DOGS (Design of Genuine Structures) schlägt zusätzlich zu den chemischen Verbindungen mögliche Strategien zu deren Synthese vor. Ein vollständig deterministischer Konstruktionsalgorithmus verwendet verfügbare Synthesebausteine und etablierte chemische Reaktionen zum Aufbau der neuen Moleküle. Die Bibliothek der Synthesebausteine umfasst etwa 25.000 Moleküle mit einer molekularen Masse zwischen 30 und 300 Da. Die Sammlung der Reaktionen zur Verknüpfung der Bausteine besteht aus 83 literaturbeschriebenen chemischen Reaktionen. Ein Großteil stellt Syntheseschritte zur Generierung neuer Ringsysteme dar. DOGS baut neue Moleküle schrittweise auf: In jedem virtuellen Syntheseschritt wird ein neues Fragment an das wachsende Molekül angefügt, bis eines der Stoppkriterien (Überschreitung einer maximalen molekulare Masse oder Anzahl Syntheseschritte) erfüllt ist. Zur Bewertung der Qualität der Zischen- und Endprodukte wird eine ligandenbasierte Strategie verwendet. Die entstehenden Moleküle werden mit einem bekannten Referenzliganden verglichen, welcher die gewünschte biologische Aktivität aufweist. Das Verfahren zielt dabei auf die Maximierung der Ähnlichkeit der neu konstruierten Moleküle zur Referenz ab. Eine Graphkernmethode berechnet die Ähnlichkeit zum Referenzliganden anhand des Vergleichs ihrer zweidimensionalen molekularen Struktur. In einer theoretischen Auswertung des Programms werden ca. 1.800 generierte potentielle Trypsin-Inhibitoren hinsichtlich solcher Eigenschaften analysiert, welche für neu entworfene Verbindungen kritisch sind: DOGS ist in der Lage wirkstoffartige Moleküle zu entwerfen (79% verletzen weniger als zwei von Lipinskis 'rule of five' Kriterien zur Abschätzung der oralen Bioverfügbarkeit). Zusätzlich wurde die Wirkstoffartigkeit der DOGS-Moleküle durch einen trainierten Klassifizieralgorithmus bewertet. Hierbei erhielten 51% der Verbindungen einen Wert in den oberen 20% des Wertebereichs des Klassifizierers. Weiterhin wird die synthetische Zugänglichkeit für den Großteil der computergenerierten Moleküle als hoch eingeschätzt (77% erhalten einen Wert in den oberen 10% des Wertebereichs eines Deskriptors zur Abschätzung der Synthetisierbarkeit). Die berechneten logP(o/w) Werte der konstruierten Moleküle entsprechen in ihrer Verteilung denen der Referenzliganden. Die Untersuchung der vorgeschlagenen Trypsin-Inhibitoren auf Bioisostere zur Adressierung der S1-Bindetasche zeigt, dass hierfür plausible Vorschläge von DOGS generiert werden. Der Großteil ist potentiell in der Lage eine kritische ladungsvermittelte Interaktion mit dem Protein in der S1-Bindetasche einzugehen. Unter den Vorschlägen befinden sich unter anderem auch drei Seitenketten, für die Interaktionen mit der S1-Bindetasche von Trypsin experimentell bestätigt sind. Eine Analyse ausgewählter Beispiele aus verschiedenen Läufen zum Ligandenentwurf für unterschiedliche biologische Zielmoleküle zeigt, dass das Programm in der Lage ist, die generelle topologische Anordnung potentieller Interaktionspunkte der Referenzliganden in den neu erzeugten Molekülen beizubehalten. Gleichzeitig sind diese Moleküle strukturell verschieden im Vergleich zu den Referenzliganden. Die generierten Synthesewege sind kurz und erscheinen in den meisten Fällen plausibel. Für einige der Syntheseschritte wird bei der praktischen Umsetzung der ergänzende Einsatz von Schutzgruppen notwendig sein, um unerwünschte Nebenreaktionen zu vermeiden. Die Software wurde zusätzlich zu den theoretischen Analysen in prospektiven Studien zum Ligandenentwurf praktisch evaluiert. Hierzu wurde DOGS zur Generierung von Liganden des humanen Histaminrezeptors 4 (hH4R) sowie der humanen gamma-Sekretase eingesetzt. Für hH4R wurde einer der entworfenen potentiellen Liganden synthetisiert, wobei der vorgeschlagene Syntheseweg exakt nachvollzogen werden konnte. Der Ligand weist eine geringfügige Affinität zum Histaminrezeptor auf. Für die gamma-Sekretase wurden zwei der entworfenen Moleküle zur Synthese und Testung ausgewählt. In beiden Fällen konnte auch hier die von DOGS vorgeschlagene Synthesestrategie nachvollzogen werden. Anschließende in vitro Analysen wiesen beide Verbindungen als inverse Modulatoren der gamma-Sekretase aus. Das Konstruktionskonzept von DOGS ist in der Lage, bioaktive Substanzen vorzuschlagen. Diese sind synthetisch zugänglich und können nach der vorgeschlagenen Strategie synthetisiert werden. Somit kann das Programm als Ideengenerator für den Entwurf neuer bioaktiver Moleküle dienen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Markus Hartenfeller
URN:urn:nbn:de:hebis:30-93021
Referee:Gisbert SchneiderORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2011/03/16
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/01/27
Release Date:2011/03/16
Tag:chemical synthesis; computational chemistry; de novo design; drug design
GND Keyword:Arzneimitteldesign; De-Novo-Synthese; Computational chemistry; Deterministische Optimierung
HeBIS-PPN:23273271X
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht