Die Rolle der Chemokinrezeptoren CXCR3 und CXCR4 bei der Infiltration von Immunzellen in chronisch entzündetes Gewebe

  • Die Chemokinrezeptoren CXCR3 und CXCR4 sowie deren spezifische Liganden, CXCL9, -10 und -11 bzw. CXCL12, sind in bedeutender Weise an den pathologischen Prozessen der Th1-/Th17-vermittelten (Typ1- und Typ17-T-Helferzelle) Autoimmunerkrankungen beteiligt. Die dabei auftretenden chronischen Entzündungen sind gekennzeichnet durch eine massive Infiltration von Th1-Gedächtniszellen. Ergebnisse sowohl von tierexperimentellen Studien als auch von in vitro Experimenten weisen deutlich auf eine spezifische Wechselwirkung zwischen den proentzündlichen CXCR3- und dem homöostatischen CXCR4-Liganden hin. Weiterführenden Ergebnisse zu der molekularen Wechselwirkung von CXCR3 und -4 wurden jedoch bislang nicht veröffentlicht. Die Untersuchungen dieser Dissertation konzentrierten sich auf die Kooperation der beiden Chemokinrezeptoren in murinen Th1-Gedächtniszellen. Dabei sollte insbesondere der potentielle Einfluss dieser Interaktion auf die einzelnen Teilprozesse der Extravasation der T-Lymphozyten in vitro analysiert werden. Eingesetzt wurden hierfür statische Chemotaxis- und dynamische Flusskammerexperimente, die zum einen sensitiv genug und zum anderen für einen hohen Probendurchsatz geeignet sein mussten. Die verwendeten Techniken wurden dazu im Rahmen der Dissertation etabliert und validiert. Zunächst musste die Präzision des statischen Migrationssytems mit einer hohen Standardabweichung von durchschnittlich ± 40% deutlich verbessert werden. Ein Wechsel auf ein Kammersystem der Firma Corning verringerte die Abweichung auf ± 25%, und sogar auf ± 9,9% bei einer optimierten Auswertung mittels Durchflusszytometrie. Als weitere Methode wurde ein dynamisches Flusskammersystem mit automatischer Videoanalyse zur Bestimmung der Geschwindigkeit von Zellen etabliert. Zur Validierung der neu entwickelten Analysesoftware Imagoquant® wurden identische Filmaufnahmen von Flusskammerexperimenten hinsichtlich Zellrollen und Zellgeschwindigkeit ausgewertet und mit den Ergebnissen von zwei etablierten Methoden, der Handzählung und einem halbautomatischen Tracking-Programm, verglichen. In der gesamten Validierung stimmten die Berechnungen von Imagoquant® mit Ergebnissen der verschiedenen Auswertemethoden qualitativ überein, wobei die Filme um ein Vielfaches (16- bzw. 20-fach) schneller analysiert werden konnten als mit den bisher verwendeten Methoden. Somit konnte erfolgreich eine computergestützte Analysemethode validiert und etabliert werden, die schnell und benutzerunabhängig arbeitet und folglich objektive Daten im Hochdurchsatz generiert. Die Untersuchungen in den statischen und dynamischen Migrationssystemen ergaben, dass die Stimulation von Th1-Zellen mit CXCL9 zu einer heterologen Desensitivierung verschiedener CXCL12-vermittelter Effekte führt. In statischen Migrationsexperimenten wurde sowohl durch eine synchrone als auch eine sequentielle Stimulation mit CXCL9 eine CXCL12-vermittelte Chemotaxis signifikant vermindert. Der auftretende Effekt war dabei lang anhaltend und konnte noch bei einer Stimulationsdauer von 20 h beobachtet werden, ohne an Intensität zu verlieren. Weitere funktionelle Experimente erfolgten in dynamischen Flusskammerexperimenten, um die desensitivierende Wirkung von CXCL9 auf CXCL12-abhängige Interaktionen der Adhäsionskaskade von Th1-Zellen zu untersuchen. In mit E-Selektin und ICAM-1 Fc-Chimära) beschichteten Flusskammern führte immobilisiertes CXCL12 zu vermehrtem integrinabhängigen Rollen, welches durch eine Vorinkubation der Th1-Zellen mit CXCL9 reduziert wurde. In Flusskammern mit murinen Endothelzellen bewirkte immobilisiertes CXCL12 eine rasche integrinabhängige Adhäsion der Zellen und verkürzte dadurch deren Rollphase signifikant. Eine Vorbehandlung der Zellen mit CXCL9 verminderte dagegen die CXCL12-vermittelte Adhäsion und führte damit zu längeren Rollphasen. Deutliche Effekte zeigte CXCL12 bezüglich einer gesteigerten intravasalen und transendothelialen Migrationsrate von T-Lymphozyten, die durch eine Vorstimulation mit CXCL9 aufgehoben wurden. Um die beteiligten Mechanismen dieser Desensitivierung zu entschlüsseln, wurde die Oberflächenexpression von CXCR3 und CXCR4 in dem Th1-Zellklon durchflusszytometrisch analysiert. Dabei zeigte sich, dass eine Stimulation mit CXCL9 neben der ligandenspezifischen Internalisierung von CXCR3 auch eine Kreuzregulation der CXCR4-Oberflächenexpression bewirkte. Im Weiteren wurde die Phosphorylierung bekannter Signalmoleküle der CXCR4-Signalwege analysiert. Eine Vorbehandlung der Zellen mit CXCL9 desensitivierte die CXCL12-induzierte Phosphorylierung von Akt signifikant und führte zu einer zeitlichen Modulation des Signals. Ferner verzögerte eine Vorbehandlung der Th1-Zellen mit CXCL9 das CXCL12-induzierte Calciumsignal erheblich, während dabei eine 3,5-fach höhere maximale Ca2+-Konzentration gemessen wurde. Ein abgeleiteter Mechanismus der CXCL9-abhängigen Desensitivierung von CXCR4-Signalwegen beeinflusst insbesondere die Signaltransduktion über den T-Zellrezeptor und dadurch auch die Regulation von Rac1. Des Weiteren führt CXCL9 zur Gi- oder ZAP-70-vermittelten Aktivierung der PKC, welche darauffolgend den CXCR4-Rezeptor phosphoryliert und damit zu dessen Internalisierung führt. Die in vitro beobachtete Desensitivierung verschiedener CXCL12/CXCR4-vermittelter Effekte durch CXCL9 wirkt potentiell in der in vivo Situation von Autoimmunerkrankungen auf unterschiedliche Weise proinflammatorisch. Zum einen wird die Mobilisierung von Th1-Zellen aus CXCL12 exprimierenden peripheren Gewebe gefördert und gleichzeitig verhindert, dass Th1-Zellen in nicht entzündetes peripheres Gewebe rekrutiert werden. Zum anderen wird im Entzündungsgebiet die Affinität der Th1-Zellen zu den CXCL12-exprimierenden Endothelzellen verringert und die Migration in tieferliegende Gebiete der Entzündung begünstigt. Ferner vermindern CXCR3-Liganden auch antiinflammatorische Effekte des CXCL12s, wie z.B. die Polarisierung der Th1-Zellen in regulatorische T-Zellen.

Download full text files

  • DissertationOliverGiegold.pdf
    deu

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Oliver Giegold
URN:urn:nbn:de:hebis:30-109079
Referee:Heinfried H. RadekeORCiDGND, Beatrix SüßGND
Document Type:Doctoral Thesis
Language:German
Year of Completion:2010
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2011/05/17
Release Date:2011/07/22
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:425291561
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG