Dynamic BOLD functional connectivity in humans and its electrophysiological correlates

  • Neural oscillations subserve many human perceptual and cognitive operations. Accordingly, brain functional connectivity is not static in time, but fluctuates dynamically following the synchronization and desynchronization of neural populations. This dynamic functional connectivity has recently been demonstrated in spontaneous fluctuations of the Blood Oxygen Level-Dependent (BOLD) signal, measured with functional Magnetic Resonance Imaging (fMRI). We analyzed temporal fluctuations in BOLD connectivity and their electrophysiological correlates, by means of long (≈50 min) joint electroencephalographic (EEG) and fMRI recordings obtained from two populations: 15 awake subjects and 13 subjects undergoing vigilance transitions. We identified positive and negative correlations between EEG spectral power (extracted from electrodes covering different scalp regions) and fMRI BOLD connectivity in a network of 90 cortical and subcortical regions (with millimeter spatial resolution). In particular, increased alpha (8-12 Hz) and beta (15-30 Hz) power were related to decreased functional connectivity, whereas gamma (30-60 Hz) power correlated positively with BOLD connectivity between specific brain regions. These patterns were altered for subjects undergoing vigilance changes, with slower oscillations being correlated with functional connectivity increases. Dynamic BOLD functional connectivity was reflected in the fluctuations of graph theoretical indices of network structure, with changes in frontal and central alpha power correlating with average path length. Our results strongly suggest that fluctuations of BOLD functional connectivity have a neurophysiological origin. Positive correlations with gamma can be interpreted as facilitating increased BOLD connectivity needed to integrate brain regions for cognitive performance. Negative correlations with alpha suggest a temporary functional weakening of local and long-range connectivity, associated with an idling state.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Enzo TagliazucchiORCiDGND, Frederic von Wegner, Astrid Morzelewski, Verena Brodbeck, Helmut LaufsORCiDGND
URN:urn:nbn:de:hebis:30:3-278491
DOI:https://doi.org/10.3389/fnhum.2012.00339
ISSN:1662-5161
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/23293596
Parent Title (English):Frontiers in human neuroscience
Publisher:Frontiers Research Foundation
Place of publication:Lausanne
Document Type:Article
Language:English
Date of Publication (online):2013/01/22
Date of first Publication:2012/12/28
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2013/01/22
Tag:EEG-fMRI; brain networks; brain oscillations; dynamic connectivity; resting state
Volume:6
Issue:Article 339
Page Number:22
Note:
Copyright © 2012 Tagliazucchi, von Wegner, Morzelewski, Brodbeck and Laufs. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
HeBIS-PPN:319214958
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 3.0