Including gauge corrections to thermal leptogenesis

  • Diese Dissertation stellt die systematische Einbeziehung von Eichkorrekturen in die Theorie der thermischen Leptogenese vor, welche eine Erklärung für die Frage nach dem Ursprung der Materie in unserem Universum bereitstellt. Geht man vom weithin anerkannten Urknallmodell aus, so müsste hierbei zu gleichen Teilen Materie sowie Antimaterie entstanden sein. Aufgrund von Annihilationsprozessen sollte demnach die gesamte Materie zerstrahlt sein und ein leeres Universum zurückbleiben. Da dies aber nicht der Fall ist, stellt sich die Frage, wie das Ungleichgewicht zwischen Materie und Antimaterie entstehen konnte. Der Wert der Asymmetrie lässt sich mit Hilfe von Experimenten sehr genau bestimmen. Für eine systematische theoretische Beschreibung dieser Problematik stellte A. Sacharow drei Bedingungen auf: 1. die Verletzung der Baryonenzahl, 2. die Verletzung der Invarianz von Ladungskonjugation C sowie der Zusammensetzung von Ladungskonjugation und Parität CP sowie 3. eine Abweichung vom thermischen Gleichgewicht. Da das Urknallmodell und das Standardmodell der Teilchenphysik nicht in der Lage sind, diese Asymmetrie zu beschreiben, beschäftigt sich die vorliegende Dissertation mit der Theorie der thermischen Leptogenese, welche statt von einer ursprünglichen Baryonenasymmetrie von einer Leptonenasymmetrie ausgeht. Zu einem späteren Zeitpunkt wird diese dann mittels Sphaleron-Prozesse, welche die Baryonenzahl verletzen, in eine Baryonenasymmetrie übertragen. Hierzu werden neue Teilchen zum Standardmodell hinzugefügt: schwere Majorana-Neutrinos. Diese zerfallen im thermischen Nichtgleichgewicht CP-verletzend in die bekannten Standardmodell-Leptonen und Higgs-Teilchen. In dieser Arbeit wird eine hierarchische Anordnung der drei schweren Neutrinomassen betrachtet. Dies hat zur Folge, dass zwei der drei Majorana-Neutrinos ausintegriert werden können und eine effektive Theorie aufgestellt werden kann. Dieses Modell wird auch vanilla leptogenesis genannt und im Folgenden verwendet. Die Dissertation ist wie folgt gegliedert. Die einleitenden Betrachtungen sind Gegenstand der Kapitel 1 und 2. Dort werden weiterhin andere Modelle zur Lösung des Problems der Baryonenasymmetrie kurz vorgestellt. Die thermische Leptogenese wird eingeführt und der See-saw-Mechanismus sowie die CP-Asymmetrie genauer beschrieben. Am Ende des Kapitels wird der klassische Ansatz für Leptogenese über Boltzmann Gleichungen präsentiert. In Kapitel 3 werden die Grundlagen für Quantenfeldtheorien im Nichtgleichgewicht eingeführt. Die wichtigsten Definitionen im Falle des thermischen Gleichgewichts werden gegeben, anschließend findet sich die Verallgemeinerung auf Nichtgleichgewichtszustände. Die Bewegungsgleichungen, die sogenannten Kadanoff-Baym-Gleichungen, werden im Folgenden sowohl für skalare Teilchen als auch für Fermionen gelöst. Kapitel 4 stellt die Notwendigkeit der Einbeziehung von Eichkorrekturen im Kontext der thermischen Leptogenese vor. Durch die Definition einer Leptonenzahlmatrix lässt sich die Asymmetrie durch die Kadanoff-Baym Gleichung für Leptonen umschreiben. Da der Vergleich von Boltzmann und Kadanoff-Baym Gleichungen im letzten Teil dieses Kapitels Unterschiede im Zeitverhalten zeigt, werden im Kadanoff-Baym Ansatz thermische Standardmodell-Breiten des Higgsfeldes und der Leptonen per Hand eingeführt. Mit dieser naiven Erweiterung erhält man ein gleiches Verhalten für die Leptonenzahlmatrix, lokal in der Zeit wie die Lösung der Boltzmann Gleichung. Eine systematische Einführung von Standardmodellkorrekturen für thermische Leptogenese ist daher unumgänglich, weshalb im Rahmen der vorliegenden Dissertation von Grund auf Eichkorrekturen der Diagramme, die zur Asymmetrie führen, berücksichtigt werden. Die vier für diese Arbeit wichtigen Skalenbereich bedingen zwei Resummationsschemata, Hard Thermal Loop (HTL) und Collinear Thermal Loop (CTL), welche in Kapitel 5 vorgestellt werden. Dies führt schließlich auf zwei Differenzialgleichungen für die Berechnung der thermischen Produktionsrate des Majorana-Neutrinos, welche in Kapitel 6 numerisch weiter ausgewertet werden. In Kapitel 7 erfolgt zunächst eine naive Berechnung aller eichkorrigierter 3-Schleifen-Diagramme, die zu den beiden die Asymmetrie verursachenden Diagrammen gehören. Da eine einfache Berechnung der 3-Schleifen-Diagramme nicht ausreicht, wird an dieser Stelle ein neues, zylindrisches Diagramm eingeführt, welches alle wichtigen Beiträge, insbesondere die HTL- und CTL-resummierten, enthält. Am Ende des Kapitels findet sich der erste geschlossene Ausdruck für die eichkorrigierte Leptonenzahlmatrix in führender Ordnung in allen Kopplungen. Abschließend gibt es eine kurze Zusammenfassung und einen Ausblick in Kapitel 8. In dieser Dissertation findet sich zum ersten Mal ein systematischer Zugang zur Berücksichtigung aller Eichwechselwirkungen in der Theorie der thermischen Leptogenese. Ein geschlossener Ausdruck für die eichkorrigierte Leptonenasymmetrie konnte vorgestellt werden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Janine Hütig
URN:urn:nbn:de:hebis:30:3-300630
Referee:Owe PhilipsenORCiDGND, Carsten GreinerGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2013/06/11
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2013/05/17
Release Date:2013/06/11
Page Number:XII, 94
HeBIS-PPN:322603943
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht