Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse

  • Part of Focus on High Energy Density Physics. In this paper, we present a novel theoretical approach, which allows the study of nonequilibrium dynamics of both electrons and atoms/ions within free-electron laser excited semiconductors at femtosecond time scales. The approach consists of the Monte-Carlo method treating photoabsorption, high-energy-electron and core-hole kinetics and relaxation processes. Low-energy electrons localized within the valence and conduction bands of the target are treated with a temperature equation, including source terms, defined by the exchange of energy and particles with high-energy electrons and atoms. We follow the atomic motion with the molecular dynamics method on the changing potential energy surface. The changes of the potential energy surface and of the electron band structure are calculated at each time step with the help of the tight-binding method. Such a combination of methods enables investigation of nonequilibrium structural changes within materials under extreme ultraviolet (XUV) femtosecond irradiation. Our analysis performed for diamond irradiated with an XUV femtosecond laser pulse predicts for the first time in this wavelength regime the nonthermal phase transition from diamond to graphite. Similar to the case of visible light irradiation, this transition takes place within a few tens of femtoseconds and is caused by changes of the interatomic potential induced by ultrafast electronic excitations. It thus occurs well before the heating stimulated by electron–phonon coupling starts to play a role. This allows us to conclude that this transition is nonthermal and represents a general mechanism of the response of solids to ultrafast electron excitations.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nikita Medvedev, Harald O. JeschkeORCiD, Beata Ziaja
URN:urn:nbn:de:hebis:30:3-300890
DOI:https://doi.org/10.1088/1367-2630/15/1/015016
ISSN:1367-2630
Parent Title (English):New journal of physics : the open-access journal for physics
Publisher:Dt. Physikalische Ges. ; IOP
Place of publication:[Bad Honnef] ; [London]
Document Type:Article
Language:English
Date of Publication (online):2013/06/14
Date of first Publication:2013/01/22
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2013/06/14
Volume:15
Issue:1
Page Number:22
Note:
Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
HeBIS-PPN:347134920
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS-Classification:40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 41.00.00 Electromagnetism; electron and ion optics / 41.60.-m Radiation by moving charges / 41.60.Cr Free-electron lasers (see also 52.59.Rz Free-electron devices-in plasma physics)
40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 42.00.00 Optics (for optical properties of gases, see 51.70.+f; for optical properties of bulk materials and thin films, see 78.20.-e; for x-ray optics, see 41.50.+h) / 42.65.-k Nonlinear optics / 42.65.Re Ultrafast processes; optical pulse generation and pulse compression
60.00.00 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES / 61.00.00 Structure of solids and liquids; crystallography (for surface, interface, and thin film structure, see section 68) / 61.80.-x Physical radiation effects, radiation damage (for photochemical reactions, see 82.50.-m; for effects of ionizing radiation on biological systems, see 87.53.-j); Radiation treatments, see 81.40.Wx / 61.80.Ba Ultraviolet, visible, and infrared radiation effects (including laser radiation)
60.00.00 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES / 63.00.00 Lattice dynamics (see also 78.30.-j Infrared and Raman spectra; for surface and interface vibrations, see 68.35.Ja; for adsorbate vibrations, see 68.43.Pq; for lattice dynamics of quantum solids, see 67.80.de) / 63.20.-e Phonons in crystal lattices (for phonons in superconductors, see 74.25.Kc; see also 43.35.Gk Phonons in crystal lattice, quantum acoustics-in Acoustics Appendix) / 63.20.K- Phonon interactions
60.00.00 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES / 64.00.00 Equations of state, phase equilibria, and phase transitions (see also 82.60.-s Chemical thermodynamics) / 64.70.-p Specific phase transitions / 64.70.K- Solid-solid transitions (see also 61.50.Ks Crystallographic aspects of phase transformations; pressure effects; 75.30.Kz and 77.80.Bh for magnetic and ferroelectric transitions, respectively; for material science aspects, see 81.30.-t)
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen