The molecular networks of cell-cell adhesion: functional implications of the membrane raft associated proteins flotillin-1 and flotillin-2

  • Cell-cell adhesion is an essential process during the development of multicellular organisms. It is based on various cellular junctions and ensures a tight contact between neighboring cells, enabling interactive exchanges necessary for morphological and functional differentiation and maintaining the homeostasis of healthy tissue organization. Two important types of cell-cell adhesions are the adherens junction (AJ) and the desmosome which link the actin cytoskeleton and intermediate filaments to cadherin-based adhesion sites. The core of these structures is composed of single-span transmembrane proteins of the cadherin superfamily which include, among other members, the classical cadherins, e.g. E-cadherin, as well as the desmosomal cadherins, e.g. desmoglein-3. The cytoplasmic domains of the desmosomal and classical cadherins enable interactions with proteins of the catenin family. Classical cadherins preferentially associate with β-catenin and p120-catenin, whereas desmosomal cadherins bind to γ-catenin and plakophilins. Intriguingly, γ-catenin, also known as plakoglobin, is so far the only protein known to be present both in the AJ and the desmosome. In this study, we showed that the two homologous, membrane raft-associated proteins flotillin-1 and flotillin-2 associate with core proteins of the AJ and the desmosome in vitro and in vivo. In confluent human, non-malignant epithelial MCF10A cells and human skin cryosections, flotillin-2 colocalized with E-cadherin, desmoglein-3 and γ-catenin at cell-cell contact sites, whereas flotillin-1 showed barely any overlap with these proteins. In addition, we detected a colocalization of both flotillins with the actin-binding protein α-actinin in membrane ruffles in subconfluent and at cell-cell contact sites in confluent MCF10A cells as well as in human skin cryosections. The interaction with α-actinin was later shown to be flotillin-1 dependent by performing indirect GST pulldown experiments with purified α-actinin-1-GST in MCF10A cell lysates. Since flotillin-2 strongly colocalized with cell-cell junctions, this suggested that flotillins might be found in complex with cell adhesion proteins. Thus, we performed coimmunoprecipitation experiments in murine skin lysates and various cell lines of epithelial origin, such as human breast cancer MCF7 cells, human keratinocyte HaCaT cells and primary mouse keratinocytes. These experiments demonstrated that flotillins, especially flotillin-2, coprecipitated with E-cadherin, desmosomal cadherins and γ-catenin in relation to the respective cell type and the maturation status of these cell-cell adhesion structures. However, since γ-catenin is so far the only protein known to be present in the AJ and the desmosome, we further assumed that the complex formation of flotillins with cell adhesion structures is mediated by γ-catenin. For this, we performed indirect GST pulldown experiments in MCF10A cell lysates with bacterially expressed, purified flotillin-1-GST, flotillin-2-GST and γ-catenin-GST and were able to verify the complex formation of adhesion proteins and flotillins in vitro. To further test if the interaction of γ-catenin and flotillins is a direct one, we used purified flotillin-1-GST or flotillin-2-GST and γ-catenin-MBP fusion proteins. Both flotillins directly interacted with γ-catenin in this in vitro assay. In addition, mapping of the interaction domains in γ-catenin by using GST fusion proteins carrying different parts of γ-catenin suggested that flotillins bind to a discontinuous γ-catenin binding domain which consists of a Major determinant around ARM domains 6-12, most likely with a major contribution of the ARM domain 7, and possibly including the NT part of γ-catenin. To study the effect of flotillin depletion on cell-cell adhesion, we generated stable MCF10A cell lines in which flotillins were knocked down by means of lentiviral shRNAs. Staining of E-cadherin and γ-catenin in these cells showed that the localization at the cell-cell borders was significantly altered after flotillin-2 depletion, which pointed to a role for flotillin-2 in the formation of cell-cell adhesion structures in epithelial cells. Furthermore, isolation of detergent resistant membranes (DRMs) from these cells demonstrated that upon depletion of flotillin-2, a significant amount of E-cadherin and γ-catenin shifted into raft fractions. On the contrary, no change was detected in flotillin-1 knockdown cells. These observations point to a functional role of flotillin-2 in the regulation of raft association of cell-cell adhesion proteins. To gain more insight into the in vivo relevance of our findings, we next studied the function of flotillins in the skin of Flot2-/- knockout mice. Analysis of lysates prepared from the skin of one year old female animals revealed an increased expression of E-cadherin, desmoglein-1 and γ-catenin but not β-catenin, implicating that specific adhesion proteins are upregulated in flotillin-2 knockout skin. Since flotillins are tightly associated with membrane microdomains we next studied the interaction of flotillin-2 with membrane cholesterol. Using the photoreactive cholesterol analog azocholestanol, we were able to show that flotillin-2 and cholesterol directly interacted. In addition, previous studies speculated that flotillin-2 interacts with cholesterol via two putative cholesterol recognition/interaction amino acid consensus (CRAC) motifs. Analysis of the flotillin-2 sequence revealed that flotillin-2 actually contains four putative CRAC motifs. However, using various flotillin-2 CRAC mutant GFP fusion proteins, we were able to show that none of the putative CRAC motifs is functional, which suggested that flotillin-2 interacts with membrane cholesterol, e.g., via posttranslational modifications, such as myristoylation and palmitoylation which were previously shown to be essential for membrane association of flotillin proteins.

Download full text files

  • PhD_Thesis_Nina_Kurrle_final_2014.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nina Susanne KurrleORCiDGND
URN:urn:nbn:de:hebis:30:3-336226
Referee:Anna Starzinski-PowitzORCiDGND, Ritva Tikkanen
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2014/05/14
Year of first Publication:2013
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2014/02/13
Release Date:2014/05/14
Page Number:126
Last Page:126
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:364932643
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG