Terrestrial ecosystems on a Greenhouse Earth : climate and vegetation in the high southern latitudes during the early Paleogene

  • Terrestrial climate and ecosystem evolution during ‘Greenhouse Earth’ phases of the early Paleogene remain incompletely known. Particularly, paleobotanical records from high southern latitudes are giving only limited insights into the Paleocene and early Eocene vegetation of the region. Hence, data from continuous well-calibrated sequences are required to make progress with the reconstruction of terrestrial climate and ecosystem dynamics from the southern latitudes during the early Paleogene. In order to elucidate the terrestrial conditions from the high southern latitudes during the early Paleogene, terrestrial palynology was applied in the present study to two well-dated deep-marine sediment cores located at the Australo-Antarctic region: (i) IODP Site U1356 (Wilkes Land margin, East Antarctica) and (ii) ODP Site 1172 (East Tasman Plateau, southwest Pacific Ocean). The studied sequence from IODP Site U1356 comprises mid-shelfal sediments from the early to middle Eocene (53.9 – 46 million years ago [Ma]). For the ODP Site 1172, the studied succession is characterized by sediments deposited in shallow marine environments of the middle Paleocene to the early Eocene (60.7 – 54.2 Ma). Based on the obtained pollen and spores (sporomorphs) results from the studied sequences of Site U1356 and Site 1172, this study aims to: (1) decipher the terrestrial climate conditions along the Australo-Antarctic region from the middle Paleocene to the middle Eocene; (2) evaluate the structure, diversity and compositional patterns of forests that throve in the Australo-Antarctic region during the early Paleogene; (3) understand the response of forests from the high southern latitudes to the climate dynamics from the early Paleogene; (4) establish a connection between the generated terrestrial palynomorph data and published Sea Surface Temperatures (SSTs) from the same cores. To decipher the terrestrial climatic conditions on the Australo-Antarctic region, this study relies on the nearest living relative (NLR) concept that assumes that fossil taxa have similar climate requirements as their modern counterparts. This approach was applied to the sporomorph results of Site U1356 and Site 1172, following mainly the bioclimatic analysis. With regard to the structure and diversity patterns of the vegetation from the same region, the present study presents combined qualitative (i.e., reconstruction of the vegetation based mainly on the habitats of the known living relatives) and quantitative (i.e., application of ordination techniques, rarefaction and diversity indices) analyses of the fossil sporomorphs results. The overall results from the paleoclimatic and vegetation reconstruction approaches applied in the present study, indicate that temperate and paratropical forests during the early Paleogene throve under different climatic conditions on the Wilkes Land margin and on Tasmania, at paleolatitudes of ∼70°S and ∼65°S, respectively. Specifically, the sporomorph results from Site U1356, suggest that a highly diverse forest similar to present-day forests from New Caledonia was thriving on Antarctica during the early Eocene (53.9 – 51.9 Ma). These forests were characterized by the presence of termophilous taxa that are restricted today to tropical and subtropical settings, notably Bombacoideae, Strasburgeria, Beauprea, Spathiphyllum, Anacolosa and Lygodium. In combination with MBT/CBT paleotemperature results, they provide strong evidence for near-tropical warmth at least in the coastal lowlands along the Wilkes Land margin. The coeval presence of frost tolerant taxa such as Nothofagus, Araucariaceae and Podocarpaceae during the early Eocene on the same record suggests that paratropical forests were thriving along the Wilkes Land margin. Due to the presence of this kind of vegetation, it is possible to suggest that forests in this region were subject to a climatic gradient related to differences in elevation and/or the proximity to the coastline. By the middle Eocene, the paratropical forests that characterized the vegetation of the early Eocene on the Wilkes Land margin were replaced by low diversity temperate forests dominated by Nothofagus, and similar to present-day cool-temperate forests from New Zealand. The dominance of these forests and the absence of thermophilous elements together with the lower temperatures suggested by the MBT/CBT and the sporomorph-based temperatures indicate consistently cooler conditions during this time interval. With regard to the sporomorph results of Site 1172, this study suggests that three vegetation types were thriving on Tasmania from the middle Paleocene to the early Eocene under different climatic conditions. During the middle to late Paleocene, warm-temperate forests dominated by Podocarpaceae and Araucariaceae were the prevailing vegetation on Tasmania. The dominance of these forests was interrupted by the transient predominance of cool-temperate forests dominated by Nothofagus and Araucariaceae across the middle/late Paleocene transition interval (~59.5 to ~59.0 Ma). This cool-temperate forest was characterized by a lack of frost-sensitive elements (i.e., palms and cycads) indicating cooler conditions with harsher winters on Tasmania during this time interval. By the early Eocene, and linked with the Paleocene Eocene Thermal Maximum (PETM), Paleocene temperate forests dominated by gymnosperms were replaced by paratropical rainforests with the remarkable presence of the tropical mangrove palm Nypa during the PETM and the earliest Eocene. The overall results from Site U1356 and Site 1172, provide a new assessment of the terrestrial climatic conditions in the Australo-Antarctic region for validating climate models and understanding the response of high-latitude terrestrial ecosystems to the climate dynamics of the early Paleogene on southern latitudes. The climatic conditions in the higher latitudes during the early Paleogene were further unravelled by comparing the obtained terrestrial and marine results. The integration of the obtained sporomorph data with previously published TEX86-based SSTs from Site 1172 documents that the vegetation dynamics were closely linked with the temperature evolution from the Australo-Antarctic region. Moreover, the comparison of TEX86-based SSTs and sporomorph-based climatic estimations from Site 1172 suggests a warm-season bias of both calibrations of TEX86 (i.e., TEX86Hand TEX86H), when this proxy is applied to high southern latitudes records of the early Paleogene.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lineth Contreras AriasGND
URN:urn:nbn:de:hebis:30:3-380894
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Referee:Jörg ProssGND, Henk BrinkhuisORCiDGND, Silke VoigtORCiDGND
Advisor:Jörg Pross, Bas van de Schootbrugge, Henk Brinkhuis
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2015/08/19
Year of first Publication:2014
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/04/24
Release Date:2015/08/19
Page Number:191
HeBIS-PPN:363319301
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht