Single-particle cryo-EM structures of oligomeric membrane protein complexes

  • In dieser Arbeit wurden die Strukturen von drei Membranproteinen mittels Einzelpartikel-Kryo‑Elektronenmikroskopie (Kryo‑EM) gelöst. Bei den Membranproteinen handelt es sich um den humanen TRP-Kanal Polycystin‑2, den sekundär-aktiven Transporter BetP aus Corynebacterium glutamicum und den Rotor-Ring der N‑Typ ATPase aus Burkholderia pseudomallei. Kanäle sind Membranproteine, die Ionen durch eine Pore über die Membran diffundieren lassen. Durch einen präzisen, kanalabhängigen Regulationsmechanismus wird die Pore nur bei Bedarf geöffnet. TRP (transient receptor potential) Kanäle sind anhand von DNA-Sequenzvergleichen identifiziert worden und kommen ausschließlich in Eukaryonten vor. In dieser Arbeit lag der Fokus auf der Strukturbestimmung des humanen TRP Kanals Polycystin‑2 (PC‑2). PC‑2 wurde in einer Studie entdeckt, in der Patienten mit der autosomal dominanten Erbkrankheit „polyzystische Nierenerkrankung“ untersucht wurden. Patienten mit dieser Krankheit tragen eine Mutation in einem der beiden Gene PKD1 oder PKD2, welche für die Proteine Polycystin‑1 und ‑2 kodieren. In dieser Arbeit wurden verschiedene Deletionsmutanten von PC‑2 hergestellt und in das Genom menschlicher HEK293 GnTI‑ Zellen inseriert. Die Zellen, die PC‑2 bzw. die Deletionskonstrukte am stärksten synthetisierten, wurden isoliert und für die rekombinante Proteinherstellung verwendet. Die Expression von PC‑2 führte zu der Entstehung von kristalloidem endoplasmatischem Retikulum. Mutationsstudien in dieser Arbeit zeigen, dass diese morphologische Veränderung durch die Akkumulation von Membranproteinen, die mit sich selbst interagieren, begünstigt wird. Weiter ist es in dieser Arbeit gelungen, PC‑2 zu reinigen und die Struktur des Proteins mit Hilfe von Einzelpartikel Kryo-EM mit einer Auflösung von 4.6 Å zu bestimmen. Die Membrandomäne von PC‑2 ist sehr ähnlich zu den bekannten TRP Kanal Strukturen. Ein Vergleich der PC‑2 Struktur mit dem offenen und geschlossenen TRPV1 Kanal legt nahe, dass PC‑2 in seiner offenen Konformation gelöst wurde. Der sekundär aktive Transporter BetP von C. glutamicum gehört zu der Familie der BCC- (betaine-carnitine-choline) Transporter und wird durch osmotischen Schock aktiviert. Nach seiner Aktivierung importiert BetP zwei Natriumionen und ein Glycinbetain Molekül. Durch die Akkumulierung von Glycinbetain in der Zelle steigt das osmotische Potential des Zytoplasmas, was den Wasserausstrom aus der Zelle stoppt. Viele Strukturen, die BetP in unterschiedlichen Stadien des Transportprozesses zeigen, konnten bereits mittels Röntgenkristallographie gelöst werden. Allerdings ist die N‑terminale Domäne für die Kristallisation entfernt worden und die C‑terminale Domäne, die komplett aufgelöst ist, ist an einem wichtigen Kristallkontakt beteiligt. Um strukturelle Informationen über die N‑ und C‑terminale Domäne ohne Kristallisationsartefakte zu erhalten, wurde in dieser Arbeit die Struktur von BetP mittels Einzelpartikel Kryo‑EM bestimmt. Die Struktur mit einer Auflösung von 6.8 Å zeigt BetP in einem zum Zytoplasma geöffneten Zustand. Der größte Unterschied zu allen Kristallstrukturen ist die Position der C‑terminalen α‑Helix, die um ~30° rotiert ist und dadurch deutlich enger am Protein zu liegen kommt. Da BetP in Abwesenheit von aktivierenden Stoffen analysiert wurde, wird vermutet, dass es sich bei der gelösten Struktur um den inaktiven Zustand von BetP handelt. Rotierende ATPasen sind membrangebunden Enzymkomplexe, die bei der zellulären Energieumwandlung eine entscheidende Rolle einnehmen. Sie bestehen aus einem löslichen und einem membrangebundenen Teil. Während in dem löslichen Teil der zelluläre Energieträger Adenosintriphosphat (ATP) entweder synthetisiert oder hydrolysiert wird, baut der membrangebundene Teil entweder einen Ionengradienten auf oder nutzt die Energie eines existierenden Gradienten für die ATP Synthese. Ein wesentlicher Bestandteil des membrangebundenen Teils einer rotierenden ATPase ist der Rotor-Ring. Dieser transportiert Ionen über die Membran und rotiert dabei um seine eigene Achse. In dieser Arbeit wurde eine Studie fortgesetzt, die den Rotor-Ring der N‑Typ ATPase von B. pseudomallei mittels Kryo‑EM untersuchte und zeigte, dass der Rotor-Ring aus 17 identischen Untereinheiten aufgebaut ist. Damit hat die N‑Typ ATPase das größte Ionen-zu-ATP-Verhältnis aller bisher charakterisierten ATPasen. In dieser Arbeit wurde die c17 Stöchiometrie des N‑Typ ATPase Rotor-Rings bestätigt und die Struktur mittels Kryo‑EM bestimmt. Im besonderen Fokus lag dabei der Einfluss von Detergenzien auf die Strukturbestimmung. Es konnte gezeigt werden, dass die beiden Parameter Dichte und Mizellengröße der verwendeten Detergenzien ausschlaggebend für den Erfolg der Strukturbestimmung dieses sehr kleinen Membranproteins sind.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin WilkesGND
URN:urn:nbn:de:hebis:30:3-420243
Place of publication:Frankfurt am Main
Referee:Clemens GlaubitzORCiDGND, Christine ZieglerORCiD
Advisor:Christine Ziegler
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/11/15
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/11/04
Release Date:2016/11/15
Tag:Single-particle; cryo-EM
Page Number:186
HeBIS-PPN:395833116
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht