Genetic modification of enzymes and metabolic pathways for the improvement of fatty acid synthesis in the yeast Saccharomyces cerevisiae

  • The baker’s yeast Saccharomyces cerevisiae is a valuable and increasingly important microorganism for industrial applications (Hong and Nielsen, 2012). Its robustness concerning process conditions like low pH, osmotic and mechanical stress as well as toxic compounds is an advantage. Moreover, S. cerevisiae is ‘generally regarded as safe’ (GRAS). The model organism has been studied intensively. The collected data, including genomic, proteomic and metabolic information, can be used to genetically modify and improve its metabolism. Fatty acids and fatty acid derivatives have wide applications as biofuels, biomaterials, and other biochemicals. Several studies have been dealing with the overproduction of fatty acids and derivatives thereof in S. cerevisiae. The fatty acid biosynthesis starting with acetyl-CoA requires two enzymes, the acetyl-CoA carboxylase (Acc1p) and the fatty acid synthase complex (FAS), to produce acyl-CoA esters with predominantly 16 to 18 carbon atoms chain length (Lynen et al., 1980). For the synthesis of monounsaturated fatty acids in S. cerevisiae the ER bound acyl-CoA desaturase, Ole1p is essential (Tamura et al., 1976; Certik and Shimizu, 1999). Using S. cerevisiae, the first section of this work dealt with the heterologous characterization of potential ω1-desaturases. Due to the fact that unsaturated fatty compounds can be modified further by hydrosilylations, hydrovinylations, oxidations to epoxides, acids, aldehydes, ketones or metathesis reactions, the interest in ω1-fatty acids is tremendous (Behr and Gomes, 2010). With the intention to find enzymes in fungi, that have a terminal desaturase activity a search in different genome databases was performed. The sequences of Pex-Desat3 and Obr-TerDes were used as reference sequences. The analysed proteins from Schizophyllum commune (EFI94599.1), Schizosaccharomyces octosporus (EPX72095.1), Wallemia mellicola (EIM20316.1), Wallemia ichthyophaga (EOR00207.1) and Agaricus bisporus var. bisporus (EKV44635.1), however, finally turned out to be Δ9 desaturases. A fungal desaturase with ω1-activity could not be found. The Δ9 desaturase SCD1 from Mus musculus was crystallized by Bai et al. (2015) and the information for specific amino acids responsible for the substrate specificity or enzyme activity were allocated. In combination with sequence and enzyme activity data form ChDes1 from Calanus hyperboreus, Desat2 from Drosophila melanogaster, Pex-Desat3 from Planotortrix excessana and Obr-TerDes from Operophtera brumata single amino acid exchanges were performed in the Δ9 desaturase Ole1p from S. cerevisiae. For all mutants, only fatty acids (C16 - C18) with a double bond between carbon C9 and C10 could be found. This indicates, that all inserted amino acid exchanges do not affect the substrate specificity or the position of the introduced double bond. In the second section the focus was in the development of a production system for fatty acids in S. cerevisiae with regard to the previously established procedures by metabolic engineering. The combination of cytosolic malate dehydrogenase (MDH3), cytosolic malate enzyme (MAE1) and a citrate- α-ketoglutarate- carrier (YHM2) should improve the availability of acetyl-CoA in the cytosol, which is an important precursor for the fatty acid biosynthesis. If the major pathway (acetyl-CoA carboxylase and fatty acid synthase) was already optimized by high expression levels than no positive effect on increased fatty acid synthesis was detectable. Only non-optimized strains, with the additional overexpression of ATP-citrate lyase and cytosolic malate dehydrogenase, lead to a 41 % (20 mg/g dcw) improvement of fatty acid synthesis. In order to increase the fatty acid content further, the additional overexpression of DGA1 and TGL3 was performed. Hence, the highest amount of fatty acids could be observed with the strain S. cerevisiae WRY1ΔFAA1ΔFAA4 (2.5 g/L ± 0.8 g/L). The additional elimination of acyl-CoA synthetase Fat1p did not improve the yield. It was recently reported, that chain length control of the fatty acid synthesis of bacterial FAS can be changed by rational engineering (Gajewski et al., 2017a). The knowledge about bacterial FAS was transferred in this work to S. cerevisiae FAS. Mutating up to five amino acids in the FAS complex enabled S. cerevisiae to produce medium chain fatty acids (C6 - C12). Further improvement was done by metabolic pathway engineering (promoter of alcohol dehydrogenase II from S. cerevisiae (pADH2), deletion of acyl-CoA synthetase FAA2) and optimization of fermentation conditions (YEPD-bacto medium buffered with potassium phosphate). The production of medium chain fatty acids resulted in the highest yield of 464 mg/L (C6 to C12 fatty acids). Furthermore, strains were created specifically overproducing hexanoic acid (158 mg/L) and octanoic acid (301 mg/L). The characterization of transferases, which could be responsible for the de-esterification of CoA-bound fatty acids, was analysed in an additional approach. It could be shown, that the genes EHT1, EEB1 and MGL2 have an influence on the MCFA yield in the supernatant. Generally speaking, the data from the single and double deletion strains suggest that Eeb1p has a selective hydrolytic activity for hexanoic acid-CoA ester, while Eht1p shows selective hydrolytic activity for octanoic acid-CoA ester, which is in line with Saerens et al. (2006).

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Renata Pavlovic
URN:urn:nbn:de:hebis:30:3-440704
Place of publication:Frankfurt am Main
Referee:Eckhard BolesORCiD, Martin GriningerORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/04/03
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/02/28
Release Date:2017/04/03
Page Number:160
HeBIS-PPN:401253368
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht