A multi-proxy approach considering reef, sand apron and lagoon development in response to late quaternary geomorphological and environmental changes

  • In light of the global sea-level rise and climate change of the 21th century, it is important to look back into the recent past in order to understand what the future might hold. A multi-proxy data set was compiled to evaluate the influence of geomorphological and environmental factors, such as antecedent topography, subsidence, sea level and climate, on reef, sand apron and lagoon development in modern carbonate platforms through the Holocene. Therefore, a combination of remote sensing and morphological data from 122 modern carbonate platforms and atolls in the Atlantic, Indian and Pacific Oceans were conducted, along with a case study from the oceanic (Darwinian) barrier-reef system of Bora Bora, French Polynesia, South Pacific. The influence of antecedent topography and platform size as factors controlling Holocene sand apron development and extension in modern atolls and carbonate platforms is hypothesized. Antecedent topography describes the elevation and relief of the underlying Pleistocene topography (karst) and determines the distance from the sea floor to the rising postglacial sea level. Maximum lagoon depth and marginal reef thickness, when available in literature, were used as proxies for antecedent topography. Sand apron proportions of 122 atolls and carbonate platforms from the Atlantic, Indian and Pacific Oceans were quantified and correlated to maximum lagoon depth, total platform area and marginal reef thickness. This study shows that sand apron proportions increase with decreasing lagoon depths. Sand apron proportions also increase with decreasing platform area. The interaction of antecedent topography and Holocene sea-level rise is responsible for variations in accommodation space and at least determines the extension of the lateral expansion of sand aprons. In general, sand apron formation started when marginal reefs approached relative sea level. Spatial and regional variations in sea-level history let sand apron formation start earlier in the Indo-Pacific region (transgressive-regressive) than in the Western Atlantic Ocean (transgressive). The influence of sea level, antecedent topography and subsidence of a volcanic island on late Quaternary reef development was evaluated based on six rotary core transects on the barrier and fringing reefs of Bora Bora. This study was designed to revalue the Darwinian model, the subsidence theory of reef development, which genetically connects fringing reef, barrier reef and atoll development by continuous subsidence of the volcanic basement. Postglacial sea-level rise, and to a minor degree subsidence, were identified as major factors controlling Holocene reef development in that they have created accommodation space and controlled reef architecture. Antecedent topography was also an important factor because the Holocene barrier reef is located on a Pleistocene barrier reef forming a topographic high. Pleistocene soil and basalt formed the pedestal of the fringing reef. Uranium-Thorium dating shows that barrier and fringing reefs developed contemporaneously during the Holocene. In the barrier–reef lagoon of Bora Bora, the influence of environmental factors, such as sea level and climate, tsunamis and tropical cyclones controlling Holocene sediment dynamics was evaluated based on sedimentological, paleontological, geochronological and geochemical data. The lagoonal succession comprises mixed carbonate-siliciclastic sediments overlying peat and Pleistocene soil. The multi-proxy data set shows variations in grain-size, total organic carbon (proxy for primary productivity), Ca and Cl element intensities (proxies for carbonate availability and lagoonal salinity) during the mid-late Holocene. These patterns could result from event sedimentation during storms and correlate to event deposits found in nearby Tahaa, probably induced by elevated cyclone activity. Accordingly, elevated erosion and runoff from the volcanic island and lower lagoonal salinity would be a result of rainfall during repeated cyclone landfall. However, Ti/Ca and Fe/Ca ratios as proxies for terrigenous sediment delivery peaked out in the early Holocene and declined since the mid-Holocene. Benthic foraminifera assemblages do not indicate reef-to-lagoon transport. Alternatively, higher and sustained hydrodynamic energy is probably induced by stronger trade winds and a higher-than-present sea level during the mid-late Holocene. The increase in mid-late Holocene sediment dynamics within the back-reef lagoon is supposed to display sediment-load shedding of sand aprons due to the oversteepening of slopes at sand apron/lagoon edges during their progradation rather than an increase in tropical storm activity during that time. The influence of sea-level and climate changes on sediment import, composition and distribution in the Bora Bora lagoon during the Holocene is validated. Lagoonal facies succession comprises siderite-rich marly wackestones, foraminifera-siderite wackestones, mollusk-foraminifera marly packstones and mollusk-rich wackestones during the early-mid Holocene, and mudstones since the mid-late Holocene. During the early Holocene, enhanced weathering and iron input from the volcanic island due to wetter climate conditions led to the formation of siderite within the lagoonal sediments. The geochemical composition of these siderites shows that precipitation was driven by microbial activity and iron reduction in the presence of dissolved bicarbonate. Chemical substitutions at grain margins illustrate changes in the oxidation state and probably reflect changes in pore water chemistry due to sea-level rise and climate change (rainfall). In the late Holocene, sediment transport into the lagoon is hampered by motus on the windward side of the lagoon, which led to early submarine lithification within the lagoon.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Anja Isaack
URN:urn:nbn:de:hebis:30:3-442807
Place of publication:Frankfurt am Main
Referee:Eberhard GischlerORCiD, Gilbert F. Camoin
Document Type:Doctoral Thesis
Language:English
Year of Completion:2017
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/16
Release Date:2017/07/20
Page Number:257
HeBIS-PPN:406214492
Institutes:Geowissenschaften / Geographie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht