Untersuchung molekularer Mechanismen bei der Assemblierung der Pilz-Fettsäuresynthase

  • Fettsäuresynthasen vom Typ I (FAS I), hier bezeichnet als Fettsäuremegasynthasen,sind Multienzymkomplexe, in denen sämtliche funktionellen Domänen für die de-novo-Synthese von Fettsäuren einen strukturellen Verbund eingehen. Auch das für den Transport von Edukten und Intermediaten nötige Acyl Carrier Protein (ACP) ist kovalent gebundener Teil dieses Komplexes, der so zu einer hocheffizienten molekularen Maschine zur Massenproduktion dieser grundlegend essentiellen Zellbausteine wird. Die FAS I aus Pilzen (fFAS), als Gegenstand dieser Arbeit, mit einer Masse von bis zu 2,7 MDa ist heute in ihrer Struktur durch Röntgenkristallographische sowie elektronenmikroskopische Methoden gut charakterisiert. 48 funktionelle Domänen sind zu einem geschlossenen Reaktionskörper angeordnet, indem sie in einer strukturgebenden Matrix aus Expansionen und Insertionen bzgl. der enzymatischen Kerndomänen eingebettet sind, die 50% des gesamten Proteins ausmacht. Neben den zahlreichen strukturellen Informationen über fFAS ist jedoch noch wenig über ihre Assemblierung verstanden. Dabei ist sie nicht nur als ein Beispiel für das generelle Verständnis von Assemblierungsmechanismen von Multienzymkomplexen interessant, sondern wird hier auch als Ziel eines inhibitorischen Eingriffs betrachtet, um eine neue antimykotische Wirkstrategie abseits des Ausschaltens aktiver Zentren zu evaluieren. Nur wenn die Mechanismen und Wechselwirkungen im Assemblierungsprozess offen gelegt sind, lassen sie sich später gezielt attackieren. Essentielle Sekundärstrukturmotive müssen identifiziert und bewertet werden, um sie einer weiteren Evaluation als Drug-Target-Kandidaten zugänglich zu machen. In dieser Arbeit werden Resultate aus in-vivo-Experimenten an rational mutierten fFAS-Konstrukten unter Zuhilfenahme einer evolutionären Betrachtung der fFAS gemeinsam mit Erkenntnissen aus andernorts geleisteten in-vitro-Experimenten an fFAS-Fragmenten zu einem geordneten Assemblierungsweg der fFAS zusammengeführt. Dabei werden Evidenzen aus den Kausaltäten zentraler Anforderungen an einen Assemblierungsmechanismus der fFAS zu drei konsequenten Schlüsselschritten verdichtet, die (i) eine frühe Interaktion zweier komplementärer Polypeptidketten zu einer Pseudo-Einzelkette, (ii) eine posttranslationale Modifikation von ACP und (iii) die geordnete Reifung zum fertigen Komplex durch Selbstassemblierung der beteiligten Domänen umfassen. Durch rationale Mutationen an den Schnittstellenmotiven für die Pseudo-Einzelkettenbildung, werden diese als Schwachstelle der Assemblierung unterschiedlicher fFAS-Typen charakterisiert, wobei für S. cerevisiae nicht weniger als zwei gezielte Punktmutationen ausreichen, um die Assemblierung des gesamten Komplexes zu verhindern. Darüber hinaus zeigen Experimente mit fFAS-Konstrukten, deren Schnittstellenmotive einer intramolekular kompetitiven Wechselwirkung ausgesetzt sind, prinzipiell die Möglichkeit zur Inhibierung der fFAS-Assemblierung durch Störung der Pseudo-Einzelkettenbildung.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Manuel Fischer
URN:urn:nbn:de:hebis:30:3-442963
Place of publication:Frankfurt am Main
Referee:Martin GriningerORCiDGND, Harald SchwalbeORCiDGND
Advisor:Martin Grininger
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2017/06/14
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Date of final exam:2017/06/13
Release Date:2017/06/14
Tag:Fettsäuresynthase
Page Number:142
HeBIS-PPN:404385982
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht