Automated signal identification and a structural information content measure for biomolecular NMR data

  • Das Hauptziel dieser Dissertation lag in der Verbesserung einzelner Schritte im Prozess der automatischen Proteinstrukturbestimmung mittels Kernmagnetischer Resonanz (NMR). Dieser Prozess besteht aus einer Reihe von sequenziellen Schritten, welche zum Teil bereits erfolgreich automatisiert wurden. CYANA ist ein Programmpaket, welches routinemäßig zur automatischen Zuordnung der chemischen Verschiebungen, der Nuclear Overhauser Enhancement (NOE) Signalen und der Strukturrechnung von Proteinen verwendet wird. Einer der Schritte, der noch nicht erfolgreich automatisiert wurde, stellt die Signalidentifizierung von NMR Spektren dar. Dieser Schritt ist besonders wichtig, da Listen von NMR-Signalen Grundlage aller Folgeschritte sind. Fehler in den Signallisten pflanzen sich in allen Folgeschritten der Datenauswertung fort und können am Ende in falschen Strukturen resultieren. Daher war ein Ziel dieser Arbeit, einen robusten und verlässlichen Algorithmus zur Signalidentifizierung von NMR Spektren in CYANA zu implementieren. Dieser Algorithmus sollte mit dem in FLYA implementierten Ansatz zur automatischen Resonanzzuordnung, der automatischen NOE-Zuordnung und der Strukturrechnung mit CYANA kombiniert werden. Der in CYANA implementierte CYPICK Algorithmus ahmt den von Hand durchgeführten Ansatz nach. Bei der manuellen Methode schaut sich der Wissenschaftler zweidimensionale Konturliniendarstellungen der NMR Spektren an und entscheidet anhand verschiedener Geomtrie- und Ähnlichkeitskriterien, ob es sich um ein Signal des Proteins oder um einen Artefakt handelt. Proteinsignale sind ähnlich zu konzentrischen Ellipsen und erfüllen bestimmte geometrische Kriterien, wie zum Beispiel ungefähr kreisförmiges Aussehen nach entsprechender Skalierung der spektralen Achsen und gänzlich konvexe Formen, die Artefakte nicht aufzeigen. CYPICK bewertet die Konturlinien lokaler Extrema nach diesen Bedingungen und entscheidet anhand dieser, ob es sich um ein echtes Signal handelt oder nicht. Das zweite Ziel dieser Arbeit war es ein Maß zur Quantifizierung der Information von strukturellen NMR Distanzeinschränkungen zu entwickeln. Der sogenannte Informationsgehalt (I) ist vergleichbar mit der Auflösung in der Röntgenkristallographie. Ein weiteres Projekt dieser Dissertation beschäftigte sich mit der strukturbasierten Medikamentenentwicklung (SBDD). SBDD wird meist von der Röntgenkristallographie durchgeführt. NMR hat jedoch einige Vorteile gegenüber der Röntgenkristallographie, welche interessant für SBDD sind. Daher wurden Strategien entwickelt, die NMR für SBDD zugänglicher machen sollen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Julia Würz
URN:urn:nbn:de:hebis:30:3-443470
Place of publication:Frankfurt am Main
Referee:Peter GüntertORCiDGND, Volker DötschORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/07/03
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/28
Release Date:2017/07/03
Page Number:235
HeBIS-PPN:404901794
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht