Flotillins as novel regulators of desmosome dynamics

  • Multicellular organisms require that cells adhere to each other. This cell-cell adhesion is indispensable for the formation and the integrity of epithelial structures, tissues and organs. Mammals have developed four different cell-cell adhesion structures, the adhering junctions, which ensure the tight contact between cells but are also important platforms for communication and exchange in tissues. Two of these adhering junctions are cadherin based, the belt-like adherens junctions and the spot-like desmosomes. Both structures have in common that they are composed of single membrane spanning proteins, the cadherins, which accomplish adhesion in a calcium-dependent manner. The intracellular parts of classical as well as desmosomal cadherins bind to different adaptor proteins of the armadillo-protein family and others which build a protein plaque underneath the membrane and link the cadherins to the actin or intermediate filament cytoskeleton. Desmosomes are of special importance for tissues that have to withstand mechanical stress. Although they are essential to stabilize tissues they have to be highly flexible and dynamic structures, as processes like wound healing or tissue remodeling require that adhesive interactions can be modulated. The molecular dynamics within desmosomes are not jet understood in detail, but it is assumed that two different membrane associated pools of desmosomal cadherins exist in cells. Cadherins that are incorporated in mature desmosomes are part of the junctional pool, whereas cadherins that are not associated with firm desmosomes and the intermediate filament cytoskeleton belong to the non-junctional pool. Lateral movements between the two pools results in a dynamic equilibrium and allows for example the exchange of old cadherins. Little is known about the breakdown of desmosomal cadherins. Several studies found that desmosome assembly or endocytosis are cholesterol dependent processes and claimed that membrane microdomains play a role in the regulation of desmosome dynamics. Moreover, membrane rafts may be involved in the pathomechanism of the desmosome associated disease pemphigus, were autoantibodies bind to the cadherin desmoglein-3 and trigger its internalization which results in a loss of adhesion in skin cells. Membrane rafts are cholesterol dependent nanoscale structures of cellular membranes that are able to regulate the distribution of proteins within the plasma membrane and thus form platforms for cell signaling and membrane trafficking. Flotillins are proteins that are associated with membrane rafts and are reported to be involved in processes like endocytosis, endosomal sorting and a multitude of different signaling events. We could recently show that the membrane raft associated proteins flotillin-1 and flotillin-2 bind directly to the armadillo protein y-catenin which can be part of both, the adherens junction and the desmosome. The aim of this study was to eluciadate a possible role of flotillins in the regulation of desmosomes. HaCaT keratinocytes were chosen as the main cell system for this study and at first the association of desmosomal components with flotillins was analyzed in detail. It was found that flotillins are clearly associated with desmosomal proteins. They colocalize with desmoglein-3 at cell borders and precipitate the other desmogleins. Further binding assays revealed that both flotillins bind to all desmogleins and the long isoforms of the second class of desmosomal cadherins, the desmocollins. The interaction is a direct one and was mapped to the ICS sequence within the cadherins. This close association rendered the question whether flotillins are functionally implicated in desmosome regulation. To address this issue, stable flotillin knockdown HaCaT cells were analyzed in detail. The molecular morphology of desmoglein-3, desmoglein-1 and two plaque proteins was clearly altered in the absence of flotillins. The membrane staining of all tested desmosomal proteins was derailed and disordered. Furthermoore, the loss of flotillins had an impact on the adhesive capacity of HaCaT keratinocytes. The cell-cell adhesion was weakened in the absence of flotillins, which was monitored by an increased fragmentation of knockdown cells in a cell dissociation assay. In order to find out the mechanism by which flotillins influence the membrane morphology and the adhesiveness in keratinocytes, the association of desmosomal proteins with membrane microdomains was examined, at first. A predominant part of desmoglein-3 is associated with membrane rafts in HaCaT keratinocytes, whereas only a minor part of desmoglein-1 is found there. However, the raft-association of none of the examined proteins was altered in the absence of flotillins. Furthermore, flotillin depletion did not change the distribution of desmogleins with the two different cadherin pools. Less desmoglein-3 is found in the junctional pool of the flotillin depleted cells compared to the control cells, but this is due to an overall diminished desmoglein-3 protein level in these cells. Flotillins are involved in endocytic processes but their exact role there is under debate. The endocytic uptake of desmosomal cadherins requires intact membrane rafts, but the precise mechanism is still unknown. A possible involvement of flotillins on the endocytosis of desmoglein-3 was addressed next. It is known that the internalization of desmoglein-2 is dependent on the GTPase dynamin, arguing for an involvement of dynamin in the endocytosis of desmoglein-3 as well. When dynamin and thus desmoglein-3 endocytosis was inhibited using chemical compounds, the mislocalization of desmoglein-3 that was observed in flotillin knockdown cells was restored. This suggest that inhibition of desmoglein-3 endocytosis enhances the amount and/or availability of desmoglein-3 at the plasma membrane, which then normalizes the morphological alterations caused by a knockdown of flotillins. Furthermore the morphological alterations in the flotillin knockdown HaCaT cells were found to be similar to the localization of desmoglein-3 that was observed upon treatment of keratinocytes with PV IgG These structures have been described before as linear arrays and are assumed to be sites of endocytic uptake. This strengthens the idea that enhanced desmoglein-3 internalization takes place in the absence of flotillins, which then results in a weakened adhesion. Altogether this study revealed flotillins as novel players in desmosome mediated cell-cell adhesion processes. By binding to desmosomal cadherins and desmosomal plaque proteins, flotillins stabilize desmosomes at the plasma membrane and are required for a proper cell-cell adhesion.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Frauke Völlner
URN:urn:nbn:de:hebis:30:3-444005
Place of publication:Frankfurt am Main
Referee:Anna Starzinski-PowitzORCiDGND, Ritva Tikkanen
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/07/17
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/05/22
Release Date:2017/07/25
Page Number:88
HeBIS-PPN:406509662
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht