Structural development of postnatally generated dentate granule cells in organotypic entorhino-hippocampal slice cultures

  • In the dentate gyrus (DG) of the mammalian hippocampus, neurogenesis continues to take place throughout an organism’s life. Adult neurogenesis includes proliferation and differentiation of neural stem cells into dentate granule cells (GCs) that mature and integrate into the existing cellular network. This thesis work presents a novel approach that enables longitudinal examination of living postnatally generated GCs in their endogenous niche by using retroviral (RV) labeling in organotypic entorhino-hippocampal slice cultures (OTCs). Older GCs were fluorescence-labeled with an adeno-associated virus controlled by the synapsin 1 promoter (AAV-Syn). The combination of time-lapse imaging and 3-D reconstruction of newborn developing GCs and older, more mature GCs enabled comparative analyses of dendritic growth and cellular dynamics as well as investigations of spine formation and the establishment of synaptic contacts. Postnatal neurogenesis was studied in the mouse and rat DG in vivo by analysis of the distribution of chemical neuronal maturation markers doublecortin (DCX) and calbindin in combination with the GC marker Prox1 between P7 and P42. The marker expression patterns at different time points indicated that the number of mature GCs increased gradually over time and that young, immature GCs were added to the inner layers of the granule cell layer (GCL), as is the case in the adult brain. The most substantial shift in GC maturation took place between P7 and P14, though GCs in the rat DG matured faster (i.e. by ~5 days) than GCs in the mouse. Immunocytochemical in vitro analysis in OTCs at DIV 7, 14, and 28 exhibited a distribution of marker expression over time that was comparable to in vivo, though the number of DCX-expressing GCs was low at DIV 28, indicating a considerable decrease in neurogenesis rate over time in the OTC. Nevertheless, RV-labeling of newborn GCs at DIV 0 yielded successful visualization and enabled time-lapse imaging of complete developing GCs up to 4 weeks after mitosis. During the second week of development, newborn GCs exhibited a high level of structural dynamics, including extension and retraction of dendritic segments. In the third week, newborn GCs displayed high dendritic complexity which was followed by pronounced dendritic pruning. Finally, a phase of structural stabilization and local refinement could be observed during the fourth week. Older AAV-Syn-labeled GCs did not exhibit such dynamic structural remodeling. Anterograde tracing of entorhinal projection fibers using the biotinylated dextran amine Mini Ruby showed innervation of the outer molecular layer (OML) by entorhinal axons at early time points, i.e. DIV 8 when newborn GCs started to extend dendrites into the ML, as well as at DIV 20 when RV-labeled GCs exhibited elaborate dendritic trees with processes in the OML intermingling with entorhinal fibers. This shows that newborn GCs in the OTC grow into an area of existing entorhinal axon terminals, which is highly similar to the situation in the adult brain. Hence, the results show that postnatal neurogenesis can be studied effectively in the OTC system as a model of adult neurogenesis. The first appearance of spine-like protrusions in newborn GCs was observed two weeks post RV injection. Ultrastructural electron-microscopic images revealed that spines established synaptic contacts with axonal boutons. These findings suggest that newborn GCs are successfully integrated into the existing cellular circuitry in the OTC system. The high level of structural flexibility found in this study might be a necessary requisite of new neurons for successful dendritic maturation and functional integration into a neuronal network. Thus, live imaging of postnatally born GCs in the OTC appears as a useful novel approach to elucidate the mechanisms that affect cellular dynamics of neurogenesis.

Download full text files

Export metadata

Metadaten
Author:Tijana RadićGND
URN:urn:nbn:de:hebis:30:3-444015
Place of publication:Frankfurt am Main
Referee:Amparo Acker-PalmerORCiDGND, Stephan SchwarzacherORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/07/17
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/20
Release Date:2017/07/20
Page Number:165
HeBIS-PPN:406211728
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht