The QCD phase diagram at purely imaginary chemical potential from the lattice

  • In this thesis, we study some features of the quantum chromodynamics (QCD) phase diagram at purely imaginary chemical potential using lattice techniques. This is one of the possible methodologies to get insights about the situation at finite density, where the sign problem prevents direct investigations from first principles. We focus, in particular, on the Roberge-Weiss plane, where the phase structure with two degenerate flavours is studied both in the light and in the heavy quark mass limit. On the lattice, any result is affected by cut-off effects and so are the positions of the two tricritical points m_{tric}^{1,2} separating the second-order intermediate mass region from the first-order triple light and heavy mass regions. Therefore, changing the lattice spacing 'a', the values of m_{tric}^1 and m_{tric}^2 will change. In order to find their position in the continuum limit – i.e. for 'a' going to 0 – they have to be located on finer and finer lattices. Typically, in lattice QCD (LQCD) simulations, the temperature T is tuned through the bare coupling β, on which 'a' depends, while keeping Nt fixed. Hence, it is common to implicitly refer to how fine the lattice is just mentioning its temporal extent. Using both Wilson and staggered fermions, we simulate Nf=2 QCD on Nt=6 lattices, varying the quark bare mass from the chiral (m_{u,d} going to 0) to the quenched (m_{u,d} going to infinity) limit. For each quark mass, a thorough finite scaling analysis is carried out, taking advantage of two different but consistent methods. In this way we identify the order of the phase transition locating, then, the position of the tricritical points. In order to convert our measurements to physical units we fix the scale measuring the lattice spacing as well as the pion mass corresponding to the quark bare mass used. This allows a comparison between different discretisation, getting a first idea of how serious are cut-off effects. To be able to make a comparison between two different discretisations, we added an RHMC algorithm with staggered fermions to the CL2QCD software, a GPU code based on OpenCL, which we released in 2014. A considerable part of our work has been invested in ameliorating and optimising CL2QCD, as well as in developing new analysis tools regularly used next to it. Just to mention one, the multiple histogram method has been implemented in a completely general way and we took advantage of it in order to obtain more precise results. Finally, in order to efficiently handle and monitor the hundreds of simulations that are typically concurrently run in finite temperature LQCD, a completely new Bash library of tools has been developed. We plan to release it as a byproduct of CL2QCD in the near future.

Download full text files

Export metadata

Metadaten
Author:Alessandro SciarraORCiD
URN:urn:nbn:de:hebis:30:3-444165
Place of publication:Frankfurt am Main
Referee:Owe PhilipsenORCiDGND
Document Type:Doctoral Thesis
Language:English
Year of Completion:2017
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/04/21
Release Date:2017/08/01
Page Number:XIX, 185
HeBIS-PPN:415277191
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht