Untersuchungen zu einer neuen Alvarez-Struktur für den GSI Post-Stripper

  • Im Rahmen dieser Arbeit wurden neue Ansätze zur Optimierung eines Alvarez Beschleunigers für Schwerionen untersucht. Dabei dient die Alvarez-Sektion des GSI UNILAC als Untersuchungsfeld, da für den Injektionsbetrieb für FAIR eine Erneuerung dieser Sektion erforderlich ist. Dies wird durch einen neuen und optimierten Alvarez-Beschleuniger gewährleistet, wobei Effizienz und Feldstabilität sowie hohe Verfügbarkeit eine wichtige Rolle spielen. Dazu wurden im Rahmen dieser Arbeit wichtige Simulationsrechnungen durchgeführt, ein Messaufbau zum experimentellen Test eines neuartigen Konzepts zur Feld-Stabilisierung ausgelegt, in Betrieb genommen und anhand von Messungen an einem speziell dafür entwickelten Resonatormodell verifiziert. Ziel dieser Arbeit war es die experimentelle Demonstration des neuen Konzepts zur Feldstabilisierung eines Resonators. Es sollte geprüft werden, ob die zuvor durchgeführten Simulationen die realen Felder hinreichend zuverlässig vorhersagen. Diese experimentelle Prüfung ist angesichts der sehr hohen Baukosten eines realen Resonators von mehreren Millionen Euro unerlässlich. Vor Beginn dieser Arbeit war ein geeigneter Messaufbau, d.h. im Wesentlichen ein dediziertes Resonator-Modell, nicht verfügbar. Es galt ein Modell zu entwickeln, dessen Geometrie seht gut durch Simulationen modelliert werden kann, dessen Aufbau es aber trotzdem gestattet, eben diese Geometrie lokal zu variieren, um den angestrebten Effekt der Feld-Stabilisierung zu erreichen. Aufgrund von Fertigungs- sowie Justage-Toleranzen gibt es Störungen der Feldhomogenität auf der Strahl- bzw. Resonatorachse. Die Feldhomogenität quantifiziert die Fluktuationen der tatsächlichen Feldstärke bezüglich des Idealwertes. Ein perfekt homogenes Feld weist keine Abweichungen auf. Bei einer lokalen Störung ist die Feldveränderung am Ort der Störung maximal und verringert sich mit dem Abstand von dieser. Es entsteht eine Verkippung des Feldes. Die Feldverkippung ist definiert als die durch die Störung verursachte Feldabweichung normiert auf die ungestörte Feldverteilung sowie auf die damit verbundene Änderung der Modenfrequenz. Letztere wird mit Tauchkolben kompensiert; die Feldhomogenität allerdings kann nicht wieder hergestellt werden. Die Feldhomogenität muss durch eine andere Maßnahme sichergestellt werden. Bei Alvarez-Kavitäten mit einem Tankradius R < 0,4m werden „post-coupler“ eingesetzt. Post-coupler sind dünne zylinderförmige Kupferstangen die seitlich an die Driftröhren herangefahren werden und an die Resonanzmode des Beschleunigers koppeln. Gleichzeitig wird die Sensibilität auf Störungen im Tank verringert, sodass die homogene Feldverteilung auch bei Störungen gut erhalten bleibt. Bei Beschleunigerstrukturen mit größeren Tankradien werden die post-coupler zu lang und erfordern einen zu großen Aufwand in der Konstruktion. In dieser Arbeit wurde eine alternative Methode für die Stabilisierung der Feldverteilung untersucht, welche die Winkelposition der Driftröhrenstützen nutzt. Der in dieser Arbeit realisierte Resonator erlaubt die freie Einstellung der Winkel der Stützen sowie die exakte Justage der Driftröhren auf der Strahlachse. Es wurde ein Aluminium-Modell im Maßstab 1:3 zum realen Alvarez-Resonator gebaut. Dieser hatte zunächst eine Länge von ∼ 525mm und neun Driftröhren. Das Modell ist mit einem Profil der Geschwindigkeit der zu beschleunigenden Ionen ausgestattet, sodass die Driftröhren sowie die Spaltabstände entlang des Resonators länger werden. Mittels Simulationen wurden diverse Stützenkonfigurationen ausgewählt, die in den Messungen getestet wurden. Mit dem Modell konnte gezeigt werden, dass bei bestimmten Stützenanordnungen die nächst höheren Moden weiter von der Betriebsmode entfernt werden können. Die besten Ergebnisse lieferte die Stützenkonfiguration mit fünf nach unten und vier nach oben orientierten Stützenpaaren (V-Stützen-Konfiguration 5+4). Hier liegt die nächst höhere Mode in den Messungen um mehr als 160MHz von der Grundfrequenz (326,7MHz) entfernt (Vergleich originale V-Stützen-Konfiguration: nächste Mode liegt 88MHz von der Grundmode entfernt). Wichtig ist die Eigenschaft der Modenseparation vor allem für den realen Einsatz der Kavität, da hier die Moden nur um wenige MHz voneinander entfernt liegen und dies zu Störungen im Betrieb des Resonators bei hoher HF-Leistung führen kann. Bei ungenügender Modenseparation wird die eingekoppelte HF-Leistung vom Resonator reflektiert. Mitunter können die erforderlichen Felder der Betriebsmode nicht erzeugt werden. Im Falle einer Feldverkippung stimmt die reale Ionengeschwindigkeit entlang des Tanks nicht mehr mit der bei der Auslegung angenommenen überein. Das führt zu einer Verringerung der longitudinalen Strahlqualität bezüglich der erreichbaren Energieschärfe. Zur systematischen Prüfung der Methode zur Feldstabilisierung wurden definierte Störungen in den Tank eingebaut. Die erste Driftröhre wurde jeweils um 1, 2 und 3mm verlängert. Da die Zahl der Zellen zu gering war für die statistisch signifikante Feldverkippungs-Messung, musste das Modell auf 21 Spalte erweitert werden. Die besten Ergebnisse bzgl. Feld-Stabilisierung lieferte die V-Stützen-Konfiguration 7+7+6. Hier bleibt das Feld trotz Störstelle homogen. Die Feldverkippung kann auf weniger als die Hälfte derjenigen der originalen V-Stützen-Konfiguration reduziert werden. Für den Fall der originalen Stützenkonfiguration erzeugt die oben beschriebene Störung eine Abweichung der Feldhomogenität von ±28%. Mit der in dieser Arbeit optimierten Stützenkonfiguration verändert sich die Feldhomogenität nur um ±9%. Die Methode zur Feldstabilisierung mit einer optimierten Stützenanordnung ohne den Einsatz von post-couplern konnte am Modell gezeigt werden. Weiterhin wurde eine bessere Effizienz mit Zunahme der Tanklänge verifiziert. Im realen Alvarez-Tank wird die Anzahl der Spalte um einen Faktor 3 größer sein. Damit ergeben sich durch die erhöhte Anzahl zur Verfügung stehenden Stützen zusätzliche Konfigurationen, um eine Feldhomogenität von besser als ±1% zu gewährleisten. Auf der Basis dieser Untersuchungen ist bei GSI der Bau einer zunächst ca. 2m langen Sektion des neuen Alvarez-DTL mit 11 Driftröhren vorgesehen. Dabei werden Flansche für verschiedene Stützenkonfigurationen integriert. Ziel ist es hierbei die Konstruktion, die Produktion, die Feldabstimmung sowie den Betrieb bei nominalen FAIR-Parametern zu testen. Sind die Tests erfolgreich, kommt diese Sektion bei der ersten Serie für den neuen Beschleuniger zum Einsatz.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Anja Seibel
URN:urn:nbn:de:hebis:30:3-444638
Place of publication:Frankfurt am Main
Referee:Oliver KesterORCiD, Alwin SchemppGND
Advisor:Lars Groening
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2017/08/23
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/08/16
Release Date:2017/08/25
Page Number:101, X
HeBIS-PPN:416043674
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht