Investigation of heavy-light four-quark systems by means of Lattice QCD

  • Diese Doktorarbeit widmet sich der Untersuchung von Systemen von Quarks und der Wechselwirkung zwischen ihnen mit Hilfe von Lattice QCD. Aus Quarks zusammengesetzte Objekte heißen Hadronen. Ein bestimmter Typ von Hadronen ist das sogenannten Tetraquark. In Teilchendetektoren wie dem LHCb in der Schweiz oder Belle in Japan wurden in jüngerer Zeit Zustände gefunden, die als Kandidaten für Tetraquarks gelten. Diese Arbeit befasst sich mit der Beschreibung und Untersuchung solcher Tetraquark-Zustände. Die Systeme, um die es in dieser Arbeit hauptsächlich geht, enthalten vier Quarks unterschiedlicher Masse. Zwei Quarks wird im Großteil der Arbeit eine unendlich große Masse zugeordnet. Zwei Quarks haben eine endliche Masse. In dieser statisch-leichten Näherung ist es möglich, das Potential der schweren Quarks in Anwesenheit der leichten Quarks zu bestimmen und zu überprüfen, ob es attraktiv genug dazu ist, einen gebundenen Zustand der vier Quarks zu bilden. Dieses Vorgehen ist als Born-Oppenheimer-Approximation bekannt. Die Observable, die berechnet werden muss, ist also das Vier-Quark-Potential. Im ersten Teil der Arbeit werden verschiedene Vier-Quark-Potentiale aufgeführt und die zugehörigen Quantenzahlen genannt. Jeder der geeigneten Kanäle wird auf seine Fähigkeit untersucht, einen gebundenen Zustand zu bilden. Eine ausführliche systematische und statistische Analyse liefert den eindeutigen Befund, dass Bindung nur für Isospin I = 0 und nichtstatistsche u- und d-Quarks möglich ist. Im Falle von I = 1 oder nichtstatistschen s- und c-Quarks ist kein gebundener Zustand zu erwarten. Schließlich wird für den Fall der u- und d-Quarks eine Extrapolation zu physikalischen Quarkmassen durchgeführt. Die Bindung wird mit abnehmender Quarkmasse stärker. Am physikalischen Punkt wird eine Bindungsenergie von −90(+43−36) MeV festgestellt. Somit wird für Quantenzahlen I(J^P) = 0(1^+) ein gebundener b̄b̄ud-Zustand postuliert. Im zweiten Teil der Arbeit wird die statisch-leichte Näherung aufgehoben. So kann der Spin der schweren Quarks einbezogen werden. Dies führt unter anderem dazu, dass B- und B* -Mesonen unterscheidbar werden. Ein Nachteil dessen, dass vier Quarks endlicher Masse verwendet werden, ist der, dass es nun nicht mehr möglich ist, das Potential der schweren Quarks in Gegenwart der leichten zu bestimmen. Stattdessen wird aus der Korrelationsfunktion des Vier-Quark-Zustands direkt die Masse bestimmt. Zur Beschreibung der schweren Quarks wird der Ansatz der Nichtrelativistischen QCD (NRQCD) gewählt. Es wird der aus dem ersten Teil bekannte gebundene b̄b̄ud-Zustand mit Quantenzahlen I(J^P) = 0(1^+) weiter untersucht. Wir nehmen an, dass die Quantenzahlen durch ein BB*-Molekül realisiert werden. Wir bestimmen mithilfe des generalisierten Eigenwertproblems (GEP) den Grundzustand. Die Masse des Grundzustands ist ein Hinweis auf die Existenz eines gebundenen Zustands. Insgesamt bekräftigt der Befund das im ersten Teil der Arbeit gefundene Resultat, die Vorhersage eines bisher nicht gemessenen Tetraquark-Zustandes, qualitativ. Im dritten Teil der Arbeit geht es um Vier-Quark-Systeme, die ein schweres Quark und ein schweres Antiquark sowie ein leichteres Quark und ein leichteres Antiquark enthalten. Neben einem gebundenen Vier-Quark-Zustand ist u.a. die Bildung eines Bottomonium-und-Pion-Zustands möglich. Dies macht die theoretische Beschreibung dieses Systems ungleich schwieriger als die Beschreibung des im ersten und zweiten Teil der Arbeit untersuchten Systems. Seine experimentelle Untersuchung hingegen ist weniger aufwändig. So wurden bereits Kandidaten für einen solchen Zustand gemessen: Z_b(10610) und Z_b(10650). Zunächst wird ein Szenario beschrieben, in welcher Reihenfolge die zu den verschiedenen Strukturen gehörenden Potentiale vorliegen. So handelt es sich bei dem Grundzustandspotential des Systems um das Potential eines unangeregten Bottomonium-Zustands mit einem Pion in Ruhe. Darüber liegen zahlreiche Bottomonium-Zustände mit Pionen mit endlichem Impuls. Inmitten dieser Potentiale liegt gegebenenfalls das gesuchte Tetraquark-Potential. Ziel ist, einen Weg zu finden, die Bottomonium-und-Pion-Potentiale und das Tetraquark-Potential voneinander zu unterscheiden. Im ersten Schritt wird der Bottomonium-und-Pion-Grundzustand mithilfe des GEP aus dem System entfernt. Der erste angeregte Zustand ist im Anschluss daran weitgehend frei von Einflüssen des Grundzustands. Man findet, dass das Potential des ersten angeregten Zustandes attraktiv ist, sodass die Bildung eines Tetraquark-Zustandes nicht ausgeschlossen ist. Um den ersten angeregten Zustand weiter zu untersuchen, wird ein quantenmechanisches Modell verwendet, das die Volumenabhängigkeit des Überlapp eines Testzustands mit den verschiedenen Strukturen beschreibt. Es damit prinzipiell möglich, unter Zuhilfenahme mehrerer Gittervolumina eine Aussage über die Struktur des ersten angeregten Zustands zu treffen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Antje Katharine PetersGND
URN:urn:nbn:de:hebis:30:3-445220
Place of publication:Frankfurt am Main
Referee:Marc WagnerORCiDGND, Pedro BicudoORCiD, Christian S. FischerORCiDGND
Advisor:Marc Wagner
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/09/25
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/09/22
Release Date:2017/10/05
Page Number:118
HeBIS-PPN:417458347
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht