Characterization of the interaction of GET3 with the membrane bound receptors GET1 and GET2

  • The focus of this research was to understand the molecular mechanism that lies behind the insertion of tail-anchored membrane proteins into the ER membrane of yeast cells. State-of-art instruments such as LILBID, and Cryo-EM, combined with the introduction of direct electron detectors, were used to analyze the proteins that capture tail-anchored proteins near the ER membrane and help their releases from a chaperone, an ATPase named Get3. Get3 escorts TA proteins to the ER membrane, where both Get3 and the TA proteins interact sequentially to Get3 membrane bound receptors Get1 and Get2. Get1 and Get2 are homologs of mammalian WRB and CAML. The native host was used to separately produce Get1, Get2, and the Get2/Get1 single chain constructs. The studies showed that when Get1 is expressed alone, Get1 does not seems to be located in the ER membrane but rather in microbodies like shape organelles (or peroxisome). Interestingly, Get1 seems to be located in the ER membrane when it is linked to Get2 as single chain construct. The localization study of Get2/Get1 fused to GFP shows from the fluorescence intensity that Get2/Get1.GFP has a tube-like morphology or membrane-enclosed sacs (cisterna), implying that Get2/Get1 is actually targeted to the ER membrane and is likely functional. In other words, Get1 and Get2 stabilize each other in the ER membrane. The expression of Get2/Get1 was found to be already optimum when expressed as single chain construct because the fluorescence counts did not improve when additives such as DMSO or histidine were added. However, when Get1 and Get2 are expressed separately, additives improve their protein production yield. In 1 liter culture, Get1 yield is increased by about 3 mg and Get2 by 1.8 mg. This can be explained by the space that Get1 and Get2 should occupy within the ER membrane as they must coexist with other membrane components to maintain the homeostasis of the cell. Hence, if there were no gain for single chain construct expression, it meant that Get2/Get1 was already well expressed on its own in ER membrane and has reached its optimum expression without the help of additives. The Get2/Get1 overexpression is more stable, tolerated and less toxic for the cells to express it at a high level. DDM has proved to be the best detergent from the detergents tested to solubilize Get1, Get2, and Get2/Get1. Thereafter, Get1, Get2 (data not shown), and Get2/Get1 were successfully purified in DDM micelles. Furthermore, for the first time using LILBID, the actual study has shown that Get1 and Get2 are predominantly a heterotetramer (2xGet1 and 2xGet2) but higher oligomerization may exist as well. Get3 binds to Get1 in a biphasic way with a specific strong binding of an affinity of 57 nM and the second of 740 nM nonspecific indicative of heterogeneity within the interaction between Get1 and Get3. This heterogeneity is caused by the presence of different conformation of either protein. However, in order to characterize a high-resolution structure model of a specific target one needs highly homogenous and identical molecules of the target protein or complex in solution. The homogeneity increases the chances of growing crystals during crystallography as the good homogeneity will likely generate a perfect packing of unit cells stack (also known as crystal lattice) in the three-dimensional spaces. The same truth goes for the single particles analysis Cryo-EM, especially for smaller complexes where having less or no conformation alterations of specific targets will enable the researcher to classify the particles in 2D and 3D, therefore improving the signal-to-noise-ratio that will ultimately lead to high-resolution structure determination. Get1, Get2/Get1 and chimeric variants (tGet2/Get1, T4l.Get2/Get1, T4l.Get2.apocyte.Get1) were crystallized but none of the crystals could diffract due to heterogeneity. This heterogeneity was not only occurring upon the binding of Get3 to its membrane receptors, but seems to be already present within the receptors themselves through possibly different conformation. In this Ph.D. thesis, the heterogeneity of purified Get2 and Get1 as complex or individually in detergent is then, so far, the limiting factor for obtaining a high-resolution structure model of Get1 and Get2. As mentioned above, the heterogeneity observed was not due to the quality of the sample preparation but rather to the effect of different conformations that could have been native, or just because of the micelle used, as it was proven by the 3-D heterogeneity classification by Cryo-EM. In general, crosslinking is one way to keep the integrity of protein complexes, however it appeared not to improve the sample quality when it was analyzed in micelles. Often the integrity of some membrane proteins is affected when they are solubilized and purified in detergents. Finally, in this study, the structural map of Get2 and Get1 complex linked with chimeric protein T4 lysozyme and apocytochrome C b562RIL gene was obtained at 10 Å. However, this single chain construct has a density map corresponding to heterodimer species (one Get1 and Get2). Therefore, based on those data the tertiary structure of Get2/Get1 in micelle is poorly defined. It could be that the membrane extraction in DDM and the purification destabilizes the structure of the complex.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jean Aymard Nzigou Mandouckou
URN:urn:nbn:de:hebis:30:3-452095
Place of publication:Frankfurt am Main
Referee:Volker DötschORCiDGND, Clemens GlaubitzORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/06/12
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/12/05
Release Date:2017/12/07
Page Number:X, 151
HeBIS-PPN:42365571X
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht