The E3 ligase CHIP as an initiator of cellular adaptation during early proteostasis stress

  • All lifeforms have to sense changes in their environment and adapt to possibly detrimental conditions. On a cellular level, the highly elaborate proteostasis network (PN) consisting of housekeeping and stress-induced proteins, confers this tolerance against stress and maintains cellular protein homoestasis. This is essential for survival, as an accumulation of stress-induced protein aggregation will eventually affect the functionality of crucial cellular components and ultimately lead to cell death. The guardians of this balance are the molecular chaperones and their activity-regulating co-haperones. They are engaged in all aspects of protein biogenesis, maintenance and degradation, especially during stress. The heat shock proteins (HSPs) are the major chaperones in mammals and encompass constitutive and stress-induced isoforms. Among them, the HSP70 and the HSP90 family are the most abundant HSPs and their activity is involved in a great variety of homoestasis and stress-induced tasks. As part of the protein triage the E3 ligase CHIP (C-terminal HSC70-interacting protein) is an essential activity regulating co-chaperone of HSP70 and HSP90 which provides a link between chaperone mediated protein-folding and various degradation pathways. Due to its decisive function, CHIP is involved in a wide array of cellular processes, especially in clearing misfolded HSP70 client proteins that are prone to aggregate. As a consequence, CHIP was reported to confer protection against many aggregation-induced pathologies of the neuronal system. Additionally, CHIP has been identified as a critical factor in various types of cancer and is implied to affect the development and the longevity of mammals. Despite the significant progress in the understanding of CHIP’s structure and function, many aspects surrounding its chaperone dependency and its substrate recognition remain unclear. Moreover, due to the variety of substrates in diverse cellular pathways, there are yet many connections to elucidate between CHIP and components of the cellular proteostasis network. The work of this thesis was focused on the role of CHIP in acute stress response and the corresponding status of chaperone association. Moreover, it was investigated if CHIP, as the connecting ligase of folding and degradation systems, might also provide a link between the PN and the reorganisation of the cellular architecture upon stress exposure. This has become of increasing interest as recent reports highlight the importance of spatial sequestration in protein quality control. To this end, subcellular distribution of CHIP was analysed by live-cell microscopy during heat stress. It became obvious that during the heat-induced challenge of the chaperone system, CHIP migrated to new cellular sites. Further experiments suggested that the observed migration to the plasma membrane is a chaperone-independent process and in vitro reconstitution of membrane association confirmed the competitive nature of membranes and chaperones for CHIP binding. A detailed in vivo and in vitro analysis of the newly observed membrane association of CHIP revealed a distinct lipid specificity and a novel direct association with lipids. Binding experiments with recombinantly purified deletion mutants of CHIP identified the TPR domain and a positive patch in the coiled-coil domain as main determinants for the lipid association. Through biochemical and biophysical approaches, the structural integrity and functionality of CHIP upon membrane binding was confirmed and further characterised. Moreover, mass spectrometry analysis provided a high confidence identification of chaperone-free interactors of CHIP at the plasma membrane and other membranous compartments. In accordance with the lipid specificity, the Golgi apparatus was one of these sites. Only chaperone-free CHIP had a significant effect on the morphology of the organelle, again confirming the competitive role of chaperones and lipids. With respect to the physiological consequences of the changed localisation of CHIP, preliminary results indicated increased cell death when the ligase localises to cellular membranes. The results lead to the conclusion that CHIP acts as an initiator of early stress adaptation and as a sensor for the severity and strength of the stress reaction.
  • In dieser Arbeit wurde die Rolle von CHIP während akuter Stessbelastung, im Hinblick auf Chaperonassoziation und im Besonderen auf die subzelluläre Lokalisation der E3 Ligase während der Stressexposition, untersucht.

Download full text files

Export metadata

Metadaten
Author:Yannick Kopp
URN:urn:nbn:de:hebis:30:3-504822
Place of publication:Frankfurt am Main
Referee:Martin Vabulas, Volker DötschORCiDGND
Advisor:Martin Vabulas
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/06/02
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/05/29
Release Date:2019/06/06
Page Number:XIV, 136
HeBIS-PPN:449270696
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht