Genetic modification in hematopoietic stem cells, using lentiviral vectors, to target protein expression in megakaryocyte and platelets

  • In this research project we aimed to generate genetically modified megakaryocytes and platelets, by targeting protein expression to their secretory alpha-granules to delivery ectopic or therapeutic proteins, to be stored and kept there until an external stimulus triggers platelet activation and platelet secretion takes place. During platelet activation, the therapeutic proteins would then be released to the extracellular space, either as a soluble protein or exposed as a transmembrane protein on the cell surface of platelets. For long-term approaches, genetic modifications must be introduced at the hematopoietic stem cell level. AIMS: As first approach, we aimed to characterize the lineage-specificity of expression of six different promoter fragments in lentiviral vectors: the murine platelet factor 4 (mPf4) 1222 bp (-1074 to +148), human glycoprotein Ib alpha (hGP1BA) 595 bp (-265 to +330), a short and a longer fragment of the human glycoprotein 6 (hGP6 / hGP6s) 351 bp (-322 to +29) / 726 bp (-697 to +29), as well the human glycoprotein 9 (GP9) promoter 794 bp (-782 to -12). These promoter fragments were included as internal cellular promoters in self-inactivating lentiviral vectors (SIN), using an enhanced green fluorescent protein (eGFP) as gene reporter. GFP detection was evaluated in vitro (in transduced non-megakaryocitc blood cell progenitors and in-vitro differentiated megakaryocytes) and in vivo (Bone marrow cells, blood cells and spleen cells). For targeting of proteins to the secretory alpha granules of megakaryocytes and platelets, we followed two strategies: A) The sorting signal of the cytokine RANTES was fused N-terminally to the destabilized GFP, d2eGFP (RANTES. d2eGFP), to deliver the protein into the granules as soluble cargo. B) The transmembrane granular targeting sequence of P-selectin (the transmembrane domain and cytoplasmic tail (referred as TDCT) was fused to d2eGFP or the B domain deleted codon optimized human coagulation Factor VIII cDNA (referred as BDcohFVIII_TDCT or FVIII_TDCT), to deliver the protein into the membrane of alpha granules. These two strategies were tested in-vitro, from transduced differentiated megakaryocytes in liquid cultures, and in-vivo, by analysis of genetically modified platelets by means of Laser Scanning Confocal Microscopy (LSM) in colocalization analysis (performed at the single cell level) and fluorescence intensity analysis. RESULTS: GFP expression in blood cells from transplanted mice was significantly higher in platelets, with a smaller background promoter activity in leukocytes and erythrocytes. The highest expression was observed from the mPf4-vector, followed by hGP1BA, hGP6 and hGP6s vectors, identifying the hGP6 vectors as the most restricted to the megakaryocyte and platelet lineage. Analysis in bone marrow cells showed that hGP6-vectors have the lowest activity in the hematopoietic stem and progenitor cells (HSPC) with less than 10% of GFP positive stem cells. Surprisingly, the mPf4 and hGP1BA vectors were both highly active in the HSPC, in a range of 20 to 70% of GFP-positive cells. Polyploidization in later stages of MK-maturation of in-vitro Mks differentiated from Mpl-/- lineage marker negative cells were recovered after gene transfer of the thrombopoietin receptor Mpl, under the control of MK-specific vectors in differentiated into MKs. These results were corroborated in in-vivo analysis, where Mpl-/- mice transplanted with lin-BM cells transduced with the mPf4.Mpl and hGP6.Mpl vectors, showed significantly elevated platelet counts compared to control mice transplanted with a GFP-encoding control vector (PGK-GFP). In the Fluorescent intensity and colocalization analysis of transduced megakaryocytes with the targeting vectors, we observed a significant difference in the GFP targeting compared with those MK transduced with the non-targeting vectors. The median of the WCC values observed from the RANTES.d2eGFP targeting vector was 0.8 (80 % of colocalization) with P-selectin stained granules, and 0.7 (70%) with von Willebrand Factor stained granules. In the case of the non-targeting vector SFFV.d2eGFP the median of the WCC observed were <0.3 (30%) both in P-selectin and von Willebrand Factor stained granules. We observed as well that the GFP signal of MK transduced with the P-selectin.d2eGFP fusion overlapped the signals emitted by P-selectin and von Willebrand factor stained granules, not just in LSM-digitalized images but in the fluorescens intensity analysis as well, indicating a clear signal of GFP colocalization. Likewise, an evident signal overlap between the targeted FVIII (FVIII_TDCT) with the P-selectin / von Willebrand marker was observed. Colocalization and fluorescens intensity analysis performed on activated platelets from transplanted mice with the targeting vectors, corroborated what was previously observed in in-vitro megakaryocytes. The genetic modification of megakaryocyte and platelets will allow in the furture, not just the development of new generation of cells with advanced functions, but it will help us to elucidate new mechanisms and pathways of important cellular processes, by modifying cell function and cell interactions.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lisette Johana Latorre Rey
URN:urn:nbn:de:hebis:30:3-505149
Place of publication:Frankfurt am Main
Referee:Rolf MarschalekORCiDGND, Ute Modlich
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/06/14
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/03/05
Release Date:2019/06/24
Page Number:212
First Page:1
Last Page:212
HeBIS-PPN:450090027
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht