Does lockdown decrease the protective role of ultraviolet-B (UVB) radiation in reducing COVID-19 deaths?

  • Background: Nations are imposing unprecedented measures at large-scale to contain the spread of COVID-19 pandemic. Recent studies indicate that measures such as lockdowns may have slowed down the growth of COVID-19. However, in addition to substantial economic and social costs, these measures also limit the exposure to Ultraviolet-B radiation (UVB). Emerging observational evidence indicate the protective role of UVB and vitamin D in reducing the severity and mortality of COVID-19 deaths. In this observational study, we empirically outline the independent protective roles of lockdown and UVB exposure as measured by ultraviolet index (UVI), whilst also examining whether the severity of lockdown is associated with a reduction in the protective role. Methods: We apply a log-linear fixed-effects model to a panel dataset of 162 countries over a period of 108 days (n=6049). We use the cumulative number of COVID-19 deaths as the dependent variable and isolate the mitigating influence of lockdown severity on the association between UVI and growth-rates of COVID-19 deaths from time-constant country-specific and time-varying country-specific potentially confounding factors. Findings: After controlling for time-constant and time-varying factors, we find that a unit increase in UVI and lockdown severity are independently associated with 17% [-1.8 percentage points] and 77% [-7.9 percentage points] decline in COVID-19 deaths growth rate, indicating their respective protective roles. However, the widely utilized and least severe lockdown (recommendation to not leave the house) already fully mitigates the protective role of UVI by 95% [1.8 percentage points] indicating its downside. Interpretation: We find that lockdown severity and UVI are independently associated with a slowdown in the daily growth rates of cumulative COVID-19 deaths. However, we find consistent evidence that increase in lockdown severity is associated with a significant reduction in the protective role of UVI in reducing COVID-19 deaths. Our results suggest that lockdowns in conjunction with adequate exposure to UVB radiation might have provided even more substantial health benefits, than lockdowns alone. For example, we estimate that there would be 21% fewer deaths on average with sufficient UVB exposure while people were recommended not to leave their house. Therefore, our study outlines the importance of considering UVB exposure, especially while implementing lockdowns and may support policy decision making in countries imposing such measures. Competing Interest Statement: RKM is a PhD researcher at Goethe University, Frankfurt. He also is an employee of a multinational chemical company involved in vitamin D business and holds the shares of the company. This study is intended to contribute to the ongoing COVID-19 crisis and is not sponsored by his company. All other authors declare no competing interests. The views expressed in the paper are those of the authors and do not represent that of any organization. No other relationships or activities that could appear to have influenced the submitted work.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Rahul Kalippurayil MoozhipurathORCiDGND, Lennart KraftORCiDGND
URN:urn:nbn:de:hebis:30:3-735569
DOI:https://doi.org/10.1101/2020.06.30.20143586
Parent Title (English):medRxiv
Document Type:Preprint
Language:English
Date of Publication (online):2020/07/02
Date of first Publication:2020/07/02
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2023/04/16
Issue:2020.06.30.20143586
Page Number:27
HeBIS-PPN:507498933
Institutes:Wirtschaftswissenschaften
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International