Untersuchung des Seebeck-Koeffizienten an Nanodrähten und granularen Metallen

  • Die Arbeit entstand im Rahmen des Förderprogramms ”Profil NT” und war Bestandteil des BMBF–Projektes ”NANOTHERM” (FKZ17PNT005). Dabei sollte die Möglichkeit der Integration und Verwendung von Nanodrähten als funktionsbestimmende Komponente im thermoelektrischen Sensorelement untersucht werden. Eine wichtige Aufgabe bestand darin die thermoelektrischen Eigenschaften der einzelnen Nanodrähte, insbesondere den Seebeck–Koeffizienten, zu untersuchen. Im Hinblick auf die weitere Entwicklung der Nanotechnologie ist es sehr wichtig, geeignete Messplattformen zu generieren und der Wissenschaftlichen Gemeinschaft zur Verfügung zu stellen für die Charakterisierung von Nanostrukturen. Für die Forschung bedeutet dies, dass man immer präziser die ”Physik im kleinen” studieren kann. Im Bezug auf die Anwendungen stellen die ausgeführten Untersuchungen eine wesentliche Basis für die Bauelemente–Optimierung und ihren späteren industriellen Einsatz dar. In dieser Arbeit werden zwei Chipdesigns vorgestellt für die Bestimmung des Seebeck–Koeffizienten, die eine ausreichend hohe Temperaturdifferenz in Nanostrukturen erzeugen. Für beide Chips wird die mikromechanische Fertigung im einzelnen erläutert. Zusätzlich wurden die Chips in FEM–Simulationen analysiert. Eine messtechnische Charakterisierung der Chips bestätigt die Simulationen und die Funktionsweise der Chips für Untersuchungen des Seebeck–Koeffizienten an Nanostrukturen. Erstmals wurden Wolfram bzw. Platin FEBID–Deponate hinsichtlich des Seebeck–Koeffizienten untersucht. Für die Wolfram–Deponate ergab sich ein negativer Seebeck–Koeffizient. Der gemessenen Seebeck–Koeffizient war über mehrere Tage stabil. Als Ergebnis temperaturabhängiger Messungen des Seebeck–Koeffizienten konnte eine Wurzel-T Abhängigkeit beobachtet werden, die in der Theorie beschrieben wird. Eine Untersuchung des Seebeck–Koeffizienten an Pt–FEBID–Deponaten zeigt einen Vorzeichenwechsel für Proben mit geringer elektrischer Leitfähigkeit (isolierender Charakter, schwache Kopplung). In der Literatur wird dieser Vorzeichenwechsel allerdings für Proben mit metallischer elektrischer Leitfähigkeit beschrieben. Aufgrund der Messergebnisse ist zu prüfen inwiefern die Theorie des Seebeck–Koeffizienten auf Proben mit schwacher Kopplung zu übertragen ist. Da die gemessenen Seebeck–Koeffizienten bei einigen nanoskaligen Proben sehr klein waren, wurde der Seebeck–Koeffizient des Kontaktmaterials in separaten Versuchen untersucht. Für das hier verwendete Schichtsystem Ti(40nm)/Au(120nm) kann ein Seebeck–Koeffizient von -0,22µV/K angegeben werden. Bei der Charakterisierung der Pt–FEBID–Deponaten wurde dieser Beitrag des Kontaktschichtsystems zur Thermospannung berücksichtigt. Untersuchungen an BiTe–Nanodrähten mit dem Seebeck–Chip ergaben einen negativen Seebeck–Koeffizienten. Die ersten Untersuchungen wurden mit Kupfer als Kontaktmaterial durchgeführt, weil dieses sehr gute Lift–Off Eigenschaften besaß. Trotz der Kupferdiffusion in den Nanodraht hinein, wird der negative Seebeck–Koeffizient einem Tellur–Überschuss zugeschrieben, denn an Proben mit einer geeigneten Diffusionsbarriere war in nachfolgenden Untersuchungen ebenso ein negativer Seebeck–Koeffizient zu messen. Die ermittelten Beweglichkeiten sind niedriger als die von Bulkmaterial und können durch klassische Size–Effekte erklärt werden. Die gemessenen Ladungsträgerkonzentrationen liegen in typischen Bereichen für Halbmetalle. Die Charakterisierung des Seebeck–Koeffizienten mit Hilfe des hier vorgestellten Z–Chip ergab einen negativen Seebeck–Koeffizienten für die BiTe–Nanodrähte, die wie oben erläutert auf einen Tellur–Überschuss zurückzuführen sind. Eine Abschätzung eines mit Nanodrähten aufgebauten Sensors zeigt, dass im Vergleich zu konventionellen Dünnschicht–Thermopiles deutlich höhere Empfindlichkeiten zu erzielen sind. Erste technologische Konzepte für den Aufbau von Nanodraht–Arrays wurden erarbeitet und durch entsprechende Untersuchungen verifiziert. Grundsätzlich ist der Z–Chip für die Charakterisierung aller drei Transportkoeffizienten geeignet und bietet die Option, anderen Arbeitsgruppen eine universelle thermoelektrische Messplattform zur Verfügung zu stellen.

Volltext Dateien herunterladen

  • Dissertation_Schmitt_2012.pdf
    deu

    Zugriffsbeschränkung: Bestandssicherung, Zugriff nur im internen UB-Netz

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Matthias Schmitt
URN:urn:nbn:de:hebis:30:3-297585
Verlag:Univ.-Bibliothek
Verlagsort:Frankfurt am Main
Gutachter*in:Michael HuthORCiDGND, Friedemann VölkleinGND
Dokumentart:Dissertation
Sprache:Deutsch
Jahr der Fertigstellung:2013
Jahr der Erstveröffentlichung:2012
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:18.12.2012
Datum der Freischaltung:11.04.2013
Seitenzahl:129
Bemerkung:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:337024383
Institute:Physik / Physik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG