Acoustic orientation in the dark: About how the brain processes naturalistic echolocation sequences in the fruit-eating bat "Carollia perspicillata"

  • Echolocation allows bats to orientate in darkness without using visual information. Bats emit spatially directed high frequency calls and infer spatial information from echoes coming from call reflections in objects (Simmons 2012; Moss and Surlykke 2001, 2010). The echoes provide momentary snapshots, which have to be integrated to create an acoustic image of the surroundings. The spatial resolution of the computed image increases with the quantity of received echoes. Thus, a high call rate is required for a detailed representation of the surroundings. One important parameter that the bats extract from the echoes is an object’s distance. The distance is inferred from the echo delay, which represents the duration between call emission and echo arrival (Kössl et al. 2014). The echo delay decreases with decreasing distance and delay-tuned neurons have been characterized in the ascending auditory pathway, which runs from the inferior colliculus (Wenstrup et al. 2012; Macías et al. 2016; Wenstrup and Portfors 2011; Dear and Suga 1995) to the auditory cortex (Hagemann et al. 2010; Suga and O'Neill 1979; O'Neill and Suga 1982). Electrophysiological studies usually characterize neuronal processing by using artificial and simplified versions of the echolocation signals as stimuli (Hagemann et al. 2010; Hagemann et al. 2011; Hechavarría and Kössl 2014; Hechavarría et al. 2013). The high controllability of artificial stimuli simplifies the inference of the neuronal mechanisms underlying distance processing. But, it remains largely unexplored how the neurons process delay information from echolocation sequences. The main purpose of the thesis is to investigate how natural echolocation sequences are processed in the brain of the bat Carollia perspicillata. Bats actively control the sensory information that it gathers during echolocation. This allows experimenters to easily identify and record the acoustic stimuli that are behaviorally relevant for orientation. For recording echolocation sequences, a bat was placed in the mass of a swinging pendulum (Kobler et al. 1985; Beetz et al. 2016b). During the swing the bat emitted echolocation calls that were reflected in surrounding objects. An ultrasound sensitive microphone traveling with the bat and positioned above the bat’s head recorded the echolocation sequence. The echolocation sequence carried delay information of an approach flight and was used as stimulus for neuronal recordings from the auditory cortex and inferior colliculus of the bats. Presentation of high stimulus rates to other species, such as rats, guinea pigs, suppresses cortical neuron activity (Wehr and Zador 2005; Creutzfeldt et al. 1980). Therefore, I tested if neurons of bats are suppressed when they are stimulated with high acoustic rates represented in echolocation sequences (sequence situation). Additionally, the bats were stimulated with randomized call echo elements of the sequence and an interstimulus time interval of 400 ms (element situation). To quantify neuronal suppression induced by the sequence, I compared the response pattern to the sequence situation with the concatenated response patterns to the element situation. Surprisingly, although the bats should be adapted for processing high acoustic rates, their cortical neurons are vastly suppressed in the sequence situation (Beetz et al. 2016b). However, instead of being completely suppressed during the sequence situation, the neurons partially recover from suppression at a unit specific call echo element. Multi-electrode recordings from the cortex allow assessment of the representation of echo delays along the cortical surface. At the cortical level, delay-tuned neurons are topographically organized. Cortical suppression improves sharpness of neuronal tuning and decreases the blurriness of the topographic map. With neuronal recordings from the inferior colliculus, I tested whether the echolocation sequence also induced neuronal suppression at subcortical level. The sequence induced suppression was weaker in the inferior colliculus than in the cortex. The collicular response makes the neurons able to track the acoustic events in the echolocation sequence. Collicular suppression mainly improves the signal-to-noise ratio. In conclusion, the results demonstrate that cortical suppression is not necessarily a shortcoming for temporal processing of rapidly occurring stimuli as it has previously been interpreted. Natural environments are usually composed of multiple objects. Thus, each echolocation call reflects off multiple objects resulting in multiple echoes following the calls. At present, it is largely unexplored how neurons process echolocation sequences containing echo information from more than one object (multi-object sequences). Therefore, I stimulated bats with a multi-object sequence which contained echo information from three objects. The objects were different distances away from each other. I tested the influence of each object on the neuronal tuning by stimulating the bats with different sequences created from filtering object specific echoes from the multi-object sequence. The cortex most reliably processes echo information from the nearest object whereas echo information from distant objects is not processed due to neuronal suppression. Collicular neurons process less selectively echo information from certain objects and respond to each echo. For proper echolocation, bats have to distinguish between own biosonar signals and the signals coming from conspecifics. This can be quite challenging when many bats echolocate adjacent to each other. In behavioral experiments, the echolocation performance of C. perspicillata was tested in the presence of potentially interfering sounds. In the presence of acoustic noise, the bats increase the sensory acquisition rate which may increase the update rate of sensory processing. Neuronal recordings from the auditory cortex and inferior colliculus could strengthen the hypothesis. Although there were signs of acoustic interference or jamming at neuronal level, the neurons were not completely suppressed and responded to the rest of the echolocation sequence.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marcel Jerome BeetzORCiDGND
URN:urn:nbn:de:hebis:30:3-469657
Place of publication:Frankfurt am Main
Referee:Manfred KösslORCiD, Leo Peichl
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/07/01
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/06/12
Release Date:2018/07/05
Page Number:176
HeBIS-PPN:433218754
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht