Zweidimensionale Kristallisation und elektronenkristallographische Strukturbestimmung von Membranproteinen der Energieumwandlung

  • Das Photosystem II (PSII) und die F1Fo-ATP-Synthase, zwei Membranproteinkomplexen der Energieumwandlung, wurden im Rahmen dieser Dissertation bearbeitet. Mittels zweidimensionaler (2D) Kristallisation und elektronenkristallographischen Methoden sollte die dreidimensionale (3D) Struktur aufgeklärt werden. PSII katalysiert den ersten Schritt der Lichtreaktion der Photosynthese. Es ist für das Einfangen von Lichtquanten, die Anregung von Elektronen, die Freisetzung von Sauerstoff aus Wasser verantwortlich. Über 25 Untereinheiten sind an diesem Prozess in den Thylakoidmembranen der Chloroplasten beteiligt. Ziel des ersten Projekts war die Verbesserung der 8 Å-Struktur des CP47-RC-Subkomplexes durch neue oder bessere 2D-Kristalle. Die Aufreinigung aus Spinat lieferte reproduzierbar eine gute Ausbeute an aktivem PSII. Das solubilisierte PSII enthielt genug endogenes Lipid, um es ohne den Zusatz von weiterem Lipid direkt durch Mikrodialyse zu rekonstituieren. Während der Rekonstitution verlor der PSII-Komplex CP43 und andere Untereinheiten, wahrscheinlich durch das Detergenz begünstigt, und ergab hoch geordnete Membranen aus CP47-RC. Die besten vesikulären 2D-Kristalle hatten eine tubuläre Morphologie und waren bis zu 1 µm breit und 3 µm lang. Elektronenmikroskopische Bilder unter Cryo-Bedingungen von ihnen aufgenommen zeigten nach der Bildverarbeitung Daten bis 6 Å. Durch Erhöhung der Zinkazetatkonzentration im Dialysepuffer konnten dünne 3D-Kristalle gezüchtet werden, die aus 2D-Kristallstapeln bestanden. Obwohl Elektronenbeugungsmuster Reflexe bis 4,5 Å aufwiesen, konnte auf Grund der unbekannten und veränderlichen Anzahl von Schichten keine 3D-Struktur erstellt werden. Weitere Versuche die Qualität der 2D-Kristalle von CP47-RC zu verbessern waren nicht erfolgreich. Durch die kürzliche Veröffentlichung der Röntgenkristallstruktur des dimeren PSII-Komplexes aus Synechococcus elongatus wurden weitere Untersuchungen eingestellt. Im letzten Schritt der Energieumwandlungskette bildet die F1Fo-ATP-Synthase unter Ausnutzung eines elektrochemischen Gradienten schließlich ATP, die universelle Energieeinheit der Zelle. Die Struktur und Funktion des löslichen, katalytischen F1-Teils sind seit einigen Jahren im Detail bekannt. Im Gegensatz zeichnet sich die Struktur des membranintegrierten, Ionen-translozierenden Fo-Teiles aus den Untereinheiten ab2cx erst langsam ab. Der c-Ring besteht in Hefe aus 10 und in Spinatchloroplasten aus 14 Untereinheiten. Ziel des zweiten Projekts war die Aufklärung der 3D-Struktur des sehr stabilen, undecameren c-Rings aus dem Bakterium Ilyobacter tartaricus, welches Na als Kopplungsion nutzt. Große, tubuläre 2D-Kristalle mit einer Einheitszelle von 89,7 x 91,7 Å und p1-Symmetrie bildeten sich nach der Rekonstitution von gereinigten c-Ringen mit dem Lipid Palmitoyl-Oleoyl-Phosphatidylcholin, nachdem das Detergenz durch Mikrodialyse entzogen wurde. Bilder von in Trehalose eingebetteten 2D-Kristallen wurden im Elektronenmikroskop JEOL 3000 SFF bei 4 K aufgenommen. Ein 3D-Datensatz, bestehend aus 58 Bilder bis zu einem Kippwinkel von 45°, ermöglichte die Berechnung einer 3D-Dichtekarte mit einer Auflösung von 4 Å in der Membranebene und 15 Å senkrecht dazu. Die elffach symmetrisierte Karte eines c-Rings zeigt einen taillierten Zylinder mit einer Höhe von 70 Å und einem äußeren Durchmesser von 50 Å, der aus zwei konzentrischen Ringen von transmembranen (-Helices besteht. Ein C-(-Modell der c-Untereinheit, die eine helikale "hair pin" bildet, konnte in die Dichte eingepaßt werden. Die inneren Helices sind nur 6,5 Å (Zentrum-zu-Zentrum-Abstand) von einander entfernt um eine zentrale Öffnung von 17 Å Durchmesser angeordnet. Die dichte Helixpackung wird durch ein konserviertes Motiv aus vier Glycinresten ermöglicht. Jede innere Helix ist mit einer äußeren, C-terminalen Helix über einen kurzen, wohl geordneten Loop auf der cytoplasmatischen Seite verbunden. Die äußere Helix weist in der Nähe der Ionenbindungsstelle einen Knick auf, der gleichzeitig in der Mitte der Membran liegt, wo sich die äußeren und inneren Helices am nächsten kommen. Dadurch wird es möglich, dass die Ionenbindungsstelle aus den Resten von zwei äußeren (Glu65, Ser66) und einer inneren Helix (Pro28) geformt wird. Zur Unterstützung der Ein-Kanal-Modell der Ionentranslokation konnte ein Zugang von der Ionenbindungsstelle zum Cytoplasma durch polare Reste in der c-Untereinheit vorgeschlagen werden. Des Weiteren kann spekuliert werden, dass drei Ionenbrücken zwischen den c-Untereinheiten für die hohe Temperaturstabilität des Oligomers von I. tartaricus verantwortlich sind. Die Vorstellung dieses 3D-Modells des c-Rings ist ein erster Schritt hin zum Verständnis der Kopplung der Ionentranslokation an die Rotation der F1Fo-ATP-Synthase. Wenn die Struktur der a-Untereinheit gelöst worden ist, wird hoffentlich auch der Mechanismus des kleinsten, biologischen Rotationsmotors entschlüsselt werden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tassilo Krug von Nidda
URN:urn:nbn:de:hebis:30-0000002215
Referee:Bernd LudwigGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/05/23
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/12/09
Release Date:2003/05/23
HeBIS-PPN:109095529
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht