Untersuchung und Weiterentwicklung eines relativistischen Punktkopplungsmodells zur Anwendung in der Kernstrukturphysik

  • In dieser Arbeit wurde ein relativistisches Punktkopplungsmodell und seine Anwendbarkeit auf Probleme in der Kernstrukturphysik untersucht. Der Ansatz ist in der Kernstrukturphysik recht neu. Aus diesem Grund war es ein wichtiges Ziel festzustellen, wie gut sich das Modell zur Beschreibung von Grundzuständen von Kernen eignet. Während sich Modelle wie das Relativistic-Mean-Field-Modell mit Mesonenaustausch und Hartree-Fock-Rechnungen mit Skyrme-Kräften in vielen detaillierten Untersuchungen bewährt haben, musste dies für das relativistische Punktkopplungsmodell erst gezeigt werden. Als erster Schritt war eine sorgfältige Anpassung der Kopplungskonstanten des Modells erforderlich. Um möglichst einen optimalen Satz an Parametern zu erhalten, wurden verschiedene Optimierungsverfahren getestet und angewandt. Die Parameter der effektiven Mean-Field-Modelle sind untereinander stark korreliert. Zusammen mit der Nichtlinearität der Modelle führt diese Tatsache auf die Existenz vieler lokaler Minima der zu minimierenden x2-Funktion, was eine flexible Anpassungsmethode erfordert. Als besonders fruchtbar erwies sich eine Kombination aus der Methode Bevington-Curved-Step mit dem Monte-Carlo-Algorithmus simulated annea/ing. Durch die Anpassung der Kraft PC-F1 an experimentelle Daten in einem x2-Fit ist es gelungen, mit dem Punktkopplungsmodell eine Vorhersagekraft zu erreichen, die der etablierter RMF-FR- und SHF-Modelle gleicht. Dies ist nicht selbstverständlich, da die Modelle eine deutlich unterschiedliche Dichteabhängigkeit der Potenziale besitzen. Weiterhin haben wir gesehen, dass die Anpassungsprozedur der Parameter eine komplizierte Aufgabe darstellt und noch in mancher Hinsicht ausgearbeitet und verbessert werden kann. Das Punktkopplungsmodell mit der Kraft PC-F1 verhält sich für viele Observablen sehr ähnlich wie das RMF-FR-Modell. Dies betrifft die Beschreibung der bulk properties von symmetrischer Kernmaterie, Neutronenmaterie, Bindungsenergien, Spin-Bahn-Aufspaltungen, Observablen des nuklearen Formfaktors, Deformationseigenschaften von Magnesium-Isotopen, die Spaltbarriere von 240Pu sowie die Vorhersage der Schalenstruktur von überschweren Elementen. Dabei werden aber insbesondere Radien besser beschrieben als mit den RMF-FR-Kräften. Oberflächendicken werden, im Einklang mit dem RMF-FR-Modell, als zu klein vorhergesagt. Deutliche Unterschiede treten bei Deformationsenergien einiger Kerne auf (sie sind größer als beim RMF-FR-Modell und oft kleiner als die von dem SHF-Modell vorhergesagten) sowie bei Dichtefluktuationen in Kernen. Die vektoriellen Dichten der Nukleonen oszillieren nicht so stark wie die des RMF-Modells mit Mesonenaustausch, was auf die fehlende Faltung der nukleonischen Dichten zurückgeführt werden kann. Im Vergleich zum Skyrme-Hartree-Fock-Modell ergeben sich deutliche Unterschiede in der Beschreibung von symmetrischer Kernmaterie und Neutronenmaterie. Relativistische Modelle sagen eine höhere Sättigungsdichte und Bindungsenergie vorher. Die vorhergesagte Asymmetrieenergie ist deutlich größer als die Werte des SHF- bzw. Liquid-Drop-Modells. Die Beschreibung von Neutronenmaterie weicht stark von modernen Rechnungen [Fri8 1] und den Vorhersagen von Hartree-Fock-Rechnungen mit der Skyrme-Kraft SLy6 ab. Die Vorhersagen zu überschweren Kernen stimmen in Bezug auf magische Zahlen mit anderen relativistischen Modellen überein: Der doppelt-magische, überschwere Kern besitzt Z = 120 Protonen und N = 172 Neutronen. Im Einklang mit anderen selbstkonsistenten Vorhersagen zeigt seine Baryonendichte eine Semi-Blasenstruktur. Die Spaltbarrieren der Kerne 292 120 und 298 114 sind von ähnlicher Größenordnung wie die von anderen untersuchten RMF-Kräften. Die Lage des isomeren Zustandes im symmetrischen Spaltpfad liegt beim RMF-PC-Modell sehr tief, was auf eine geringe Oberflächenenergie schließen lässt. Die deutlichen Unterschiede zu den Vorhersagen von Hartree-Fock-Rechnungen mit Skyrme-Kräften zeigen, dass sich gewisse Eigenschaften der Modelle besonders stark bei überschweren Elementen auswirken. Überschwere Elemente sind ein sensitives Testfeld für die Modelle. Hier bedarf es dringender Untersuchungen, um längerfristig zuverlässige Vorhersagen machen zu können. Besonders in den Rechnungen von Bindungsenergien in Isotopen- und Isotonenketten sowie für Neutronenmaterie zeigt das Punktkopplungsmodell Schwächen im isovektoriellen Kanal der effektiven Wechselwirkung, die denen des RMF-FR-Modells ähneln. Dies bestätigt den Verdacht, dass dieser Kanal modifiziert werden muss. Deshalb wurden mehrere Varianten des RMF-PC-Modells mit Erweiterungen im isovektoriellen Kanal getestet. Ein interessantes Ergebnis der Untersuchungen zu den erweiterten Parametersätzen des Punktkopplungsmodells ist, dass sich eine Anpassung zusätzlicher Terme im isovektoriellen Kanal der Wechselwirkung mit den in dieser Arbeit verwendeten Fitstrategien nicht bewerkstelligen lässt. Andererseits zeigen die Modelle gerade in dieser Hinsicht noch unverstandene Schwächen. Dies zeigt, dass in der Zukunft eine Erweiterung der Fitstrategie wichtig wird. Kerne mit großem Isospin und z.B. Neutronenmaterie könnten hier Verwendung finden. Neue experimentelle Daten zu exotischen Kernen werden hierbei von großem Nutzen sein. Untersuchungen zur Natürlichkeit der angepassten Kopplungskonstanten mit Hilfe der naiven dimensionalen Analyse haben gezeigt, dass die Kraft PC-F1 dieses Kriterium erfüllt. Dies ist besonders interessant, da bei dieser Kraft alle Kopplungskonstanten frei im Fit variierbar waren. Die Kopplungskonstanten des Modells bzw. die korrespondierenden Terme absorbieren auch Vielkörpereffekte, weshalb es interessant ist, dass dieses Kriterium anwendbar ist. Parametersätze für erweiterte Punktkopplungsmodelle erfüllen bisher nicht das Kriterium der Natürlichkeit, was noch einmal ihre ungenügende Fixierungsmöglichkeit in den verwendeten Fitstrategien unterstreicht. Die Struktur des relativistischen Punktkopplungsmodells ermöglicht es, die Austauschterme der 4-, 6- und 8-Fermionen-Terme als direkte Terme umzuschreiben. Diese Möglichkeit ebnet den Weg für relativistische Hartree-Fock-Rechnungen für endliche Kerne, die numerisch kaum aufwendiger sind als die Rechnungen mit der Hartree-Version des Modells. Dabei bedürfen die Ableitungsterme gesonderter Behandlung. Allerdings muss dazu auch der Modellansatz erneut überdacht werden: das Pion bzw. die dazu korrespondierenden Terme sollten Bestandteil dieser Formulierung sein und durch die Austauschterme Beiträge zu den mittleren Potenzialen liefern. Relativistische Hartree-Fock-Rechnungen mit dem Punktkopplungsmodell werden es ermöglichen, den Zusammenhang zwischen relativistischen und nichtrelativistischen Hartree-Fock-Modellen systematisch und im Detail zu studieren. Längerfristig können diese Studien zu einer quantitativen Verbesserung der Modelle und damit einhergehend zu ihrem klaren Verständnis führen. Die mikroskopische und selbstkonsistente Beschreibung von Atomkernen ist eine faszinierende und spannende Herausforderung, sie anzunehmen war Ziel und Aufgabe dieser Arbeit.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Thomas Bürvenich
URN:urn:nbn:de:hebis:30-0000000827
Referee:Walter GreinerGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/05/16
Year of first Publication:2001
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/03/15
Release Date:2003/05/16
GND Keyword:Nukleon-Nukleon-Wechselwirkung; Mean-Field-Theorie; Mesonenaustauschmodell
HeBIS-PPN:105362697
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht