• Treffer 8 von 748
Zurück zur Trefferliste

Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles

  • During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD) particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C) and a slight increase in the second branch (T≤−35 °C). The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD particles being destroyed. A possible explanation could be the chemical transformation of ice active metal silicates to metal sulfates. The strongly enhanced reaction between sulfuric acid and dust in the presence of water vapor and the resulting significant reductions in IN potential are of importance for atmospheric ice cloud formation. Our findings suggest that the IN concentration can decrease by up to one order of magnitude for the conditions investigated.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Dennis NiedermeierORCiDGND, Susan HartmannORCiDGND, Tina Clauss, Heike WexORCiDGND, Alexei KiselevORCiDGND, Ryan C. Sullivan, Paul J. DeMott, Markus D. Petters, Paul Reitz, Johannes Schneider, Eugene Mikhailov, Berko Sierau, Olaf Stetzer, Bernd Reimann, Ulrich BundkeORCiDGND, Raymond A. Shaw, Angela Buchholz, Thomas F. Mentel, Frank StratmannORCiDGND
URN:urn:nbn:de:hebis:30:3-267820
DOI:https://doi.org/10.5194/acp-11-11131-2011
ISSN:1680-7367
Titel des übergeordneten Werkes (Englisch):Atmospheric chemistry and physics, 11.2011, S. 11131-11144
Verlag:European Geosciences Union
Verlagsort:Katlenburg-Lindau
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Veröffentlichung (online):09.11.2011
Datum der Erstveröffentlichung:09.11.2011
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Datum der Freischaltung:15.10.2012
Jahrgang:11
Seitenzahl:14
Erste Seite:11131
Letzte Seite:11144
Bemerkung:
© Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 License.
HeBIS-PPN:358313503
Institute:Geowissenschaften / Geographie / Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung 3.0